
Recitation 10: L, NL, and Logspace Reductions

Logspace Reductions

The question of L ?
= NL is still open. How do we answer it? We can

start by borrowing the tools developed for understanding P v. NP and
adapt them to L vs. NL. One such tool is “completeness,” where NL-
complete languages are in some ways the most difficult languages in
NL.

Our previous definition of completeness used polynomial time re-
ducibility, but since NL is contained in P that would make all lan-
guages in NL (except ∅ and Σ∗) reducible to one another. Instead we
will use log space reducibility, denoted ≤L.

Machines that compute log space reductions are deterministic Tur-
ing machines with three tapes: a read-only input tape; a write-only
output tape; and a read/write work tape that contains at most O(log n)
symbols. They are called log space transducers, shown in Figure . Note that the output tape may contain a

polynomial number of symbols!

Tf

read-only input tape, n

read/write work tape, O(log n)

one way write-only output tape, poly(n)

Figure 1: Figure of a log space trans-
ducer.

Theorem 1. If A ≤L B and B ∈ L, then A ∈ L.

Proof. Given that A ≤L B, this means there exists a log-space trans-
ducer Tf which computes the reduction f . Furthermore, let MB be the
log-space Turing Machine that decides B. To show that A ∈ L we will
construct a log-space Turing Machine MA that decides A.

A naive construction of MA would be to have MA simulate Tf on
input w and store its output, f (w), on the work tape. Then it would

2

simulate MB on f (w) and accept if MB accepts. Otherwise, it rejects.
The issue is that f (w) can have length polynomial in the input, and
our work tape only has O(log n) space. The “recomputation trick” might seem

strange because the algorithm is repeat-
ing a lot of work! That’s rather inef-
ficient, no? Certainly it’s inefficient in
terms of time, but that’s not what we’re
optimizing for, we’re trying to minimize
space!

Instead, we construct MA such that it simulates MB on f (w), but
it recomputes the symbols of f (w) on an as-needed basis. When MA

simulates MB it keeps track of where MB’s head would be on f (w).
Each time MB’s head moves, that means it sees a different symbol of
f (w). In order for the simulation to continue, MA must know what
that symbol is, so it simulates Tf on w from the beginning. But impor-
tantly, it discards all of the output except for the desired symbol. Now
that MA knows the symbol under MB’s head, the simulation can pro-
ceed. This entire process is illustrated in Figure . Lastly, if MB accepts
then accept. Otherwise, reject.

MB WT MB head pos Tf WT

MB’s head position changes

MB WT MB head pos Tf WT

PAUSE MB simulation

START Tf simulation (from beginning)

Discard all outputs from Tf until desired symbol f (w)[i]

MB WT MB head pos Tf WT

Use f (w)[i] to RESUME MB simulation

STOP Tf simulation

MB WT MB head pos Tf WT

f (w)[i]

(MA’s WT)

1

2

3

4

Figure 2: Illustration of the “recomputa-
tion” trick on MA’s working tape (WT).
A section of MA’s WT is used for the
simulation of MB on f (w), and another
section is used for the simulation of Tf
on w. Parts of the tape that are active are
colored blue, and those that are inactive
are colored red.

[1-2] When MB’s head position
changes, the simulation for MB is
paused and the simulation for Tf on w
starts from the beginning.

[3] All outputs from the simulation of
Tf are discarded until the desired sym-
bol, f (w)[i], is obtained.

[4] Use that symbol to resume the MB
simulation and stop the Tf simulation.

3

At any point during the simulation, MA’s working tape will contain
the contents of MB’s and Tf ’s working tapes, a counter keeping track
of MB’s head position, and a single symbol of f (w), all of which take
logarithmic space to store.

Theorem 2 (transitivity of logspace reductions). If A ≤L B and B ≤L C,
then A ≤L C.

Proof. Since A ≤L B there exists a log-space transducer Tf which com-
putes the reduction f , where for all strings w,

w ∈ A ⇐⇒ f (w) ∈ B.

Similarly, since B ≤L C there exists Tg computing the log-space reduc-
tion g, where for all strings w,

w ∈ B ⇐⇒ g(w) ∈ C.

To show that A ≤L C, we will construct a log-space transducer Tg◦ f

that computes g ◦ f . This is because for input w,

w ∈ A ⇐⇒ g(f (w)) ∈ C.

The machine Tg◦ f cannot simply run Tf and then Tg on the input
because that would involve writing f (w) on the working tape, but
f (w) may be polynomial in length. Using the “recomputation trick”
described in the proof of Theorem 1, we will instead recompute the
symbols of f (w) on an as-needed basis.

On input w, Tg◦ f works by simulating Tg on f (w) without storing
the entirety of it on the working tape. The machine does this by keep-
ing track of Tg’s head position on f (w). Every time a new symbol
is needed, we fire up Tf and run it on w from the beginning while
discarding the output until we get the desired symbol in f (w). The
working tape of Tg◦ f will store the contents of Tg and Tf ’s working
tapes, a counter for the head position of Tg, and a symbol of f (w),
which takes up logarithmic space.

Strongly-Connected is NL-complete

Definition 1. For a directed graph G, if for every pair of vertices u, v ∈
V(G) there is a path from u to v and a path from v to u, then G is said to be
strongly connected.

We can then define the language Strong-Conn as follows,

Strong-Conn = {⟨G⟩ : G is a strongly connected directed graph}.

Theorem 3. Path ≤L Strong-Conn.

4

Proof. Construct a log-space reduction f from Path to Strong-Conn,
f (⟨G, s, t⟩) = ⟨G′⟩. The idea is to construct G′ by making a copy of G
and adding some additional edges such that if there exists an s-t-path
in G, then we can use this path to get between any two vertices in G′.

u

v

s t

Figure 3: Construct G′ by adding addi-
tional edges, colored blue, to the graph
G and using the s-t-path in G (if it exists)
to get between any two vertices.

Concretely, G′ has the same vertices as G and every edge in G is
also in G′. For every vertex v ∈ V(G), create edges t → v and v → s
in G′. This reduction is computable in logarithmic space because it
copies the graph G from the input to the output tape. Then it steps
through the vertices of G and puts two new edges (v → s, t → v) onto
the output tape for each v.

To prove correctness, if ⟨G, s, t⟩ ∈ Path then there is an s-t-path in
G (denoted s ⇝ t). Now given any vertices u, v ∈ V(G′) there are
paths

u → s⇝ t → v,

v → s⇝ t → u.

Therefore, G′ is strongly connected and ⟨G′⟩ ∈ Strong-Conn.
For the other direction, if f (⟨G, s, t⟩) = ⟨G′⟩ ∈ Strong-Conn, then

by definition there exists a path from s to t in G′. Furthermore, this
path is made of edges that were originally in G. To see this, note that
edges added as part of the reduction are either directed into s or out
from t. These edges cannot be included in an s-t-path because they
would be part of a loop starting and ending at s or t, which can always
be excluded. Therefore, G has a path from s to t and we can conclude
that ⟨G, s, t⟩ ∈ Path.

Theorem 4. Strong-Conn ∈ NL.

Proof. Construct a nondeterministic Turing machine N that decides
Strong-Conn in log space. On input ⟨G⟩, M iterates deterministically
over all pairs of vertices u, v in G. For each pair it nondeterministically

5

guesses a path of length at most |V| from u to v vertex-by-vertex. Re-
ject if any two vertices do not have a path connecting them. Otherwise,
accept.

If the graph is strongly connected, then some sequence of guesses
will find the path for each pair of vertices, so N accepts. Otherwise,
no sequence of guesses will succeed for a pair of vertices, so N rejects.
Keep in mind that we only guess a path of length at most |V| to keep
our number of guesses finite.

Keeping track of vertices u, v requires two pointers which takes log-
arithmic space to store. Furthermore, when guessing the path vertex-
by-vertex all that is stored is a pointer to the current vertex as well
as counter keeping track of the path length. Therefore, N runs in log
space.

Corollary 1. Strong-Conn is NL-complete.

NL = coNL

A major open question in complexity theory is whether NP = coNP.
It is widely believed that these two complexity classes are different,
though we do not know how to prove this. Unlike the polynomial
time regime, however, it turns out that in the log space regime, we
actually know how to prove that the classes NL and coNL are equal!

Our starting point will be the following theorem that we showed in
class.

Theorem 5. PATH ∈ NL.

Using this fact, let us show that PATH is coNL-complete.

Theorem 6. PATH is coNL-hard.

Proof. We need to show that PATH ∈ coNL, and that PATH is coNL-
hard.

• PATH ∈ coNL. From PATH ∈ NL, we get that PATH ∈ coNL.

• PATH is coNL-hard.

Equivalently, we’d like to show that PATH is NL-hard. It suffices to
show that PATH ≤L PATH. To see why this is sufficient, consider
an application of Theorem 2: A ≤L PATH and PATH ≤L PATH
implies A ≤L PATH for all A ∈ NL. But now PATH ≤L PATH ⇐⇒
PATH ≤L PATH (to see this, think about what the transducer does
to instances inside and outside PATH). But since we showed in
class that PATH ∈ NL, this means that there in fact does exist a
logspace reduction from PATH to PATH, and we are done!

6

Now, finally, we can show that NL = coNL.

Corollary 2. NL = coNL.

Proof. We need to show that every A ∈ NL is also in coNL, and that
every B ∈ coNL is also in NL.

For any A ∈ NL, we know that A ≤L PATH, which is also coNL-
complete, so A ∈ coNL as well. By the exact same reasoning, we also
know that any B ∈ coNL satisfies B ≤L PATH which is NL-complete,
so B ∈ NL.

	Recitation 10: L, NL, and Logspace Reductions
	Logspace Reductions
	Strongly-Connected is NL-complete
	NL = coNL

