
Recitation 9: Space Complexity

In this recitation we’ll be gaining familiarity with the space complex-
ity classes: PSPACE, NPSPACE, L, and NL. So far in this class, we’ve
focused on constructing Turing machines that run within a specific
time bound. The techniques we used sometimes traded space for time
(i.e. memoization). Now we’re adjusting our perspective and instead
considering space bounds!

Space Complexity Classes

Define SPACE(s(n)) to be the set of languages decided by an O(s(n))
space deterministic Turing machine. Likewise, define NSPACE(s(n)) to
be the set of languages decided by an O(s(n)) space nondeterministic
Turing machine.

We know that: L ⊆ NL = coNL ⊆ P ⊆
NP ⊆ PSPACE = NPSPACE.

The first equality, NL = coNL, is by
Immerman-Szelepcsényi ’87. The sec-
ond, PSPACE = NPSPACE, is by Savitch
’70.

Definition 1.

PSPACE =
⋃
k

SPACE(nk)

NPSPACE =
⋃
k

NSPACE(nk)

For sublinear space complexity bounds, the machine does not have
enough space to store the entire input. Therefore, we adjust our com-
putation model to be a Turing machine with a read-only input tape
and a read/write work tape. The amount of space used is the number
of cells used on the work tape. An example of a logarithmic space
Turing machine is shown in Figure 1. We can now use this new com-

M

read-only input tape, n

read/write work tape, O(log n)

Figure 1: 2-tape Turing machine that
uses logarithmic space.

putation model to define the classes L and NL.

2

Definition 2.

L = SPACE(log n)

NL = NSPACE(log n)
Seeing how we’re defining sublinear
space bounds, a natural question might
be why we don’t have something similar
for time? Turns out we do! Note that
with a sublinear time bound, the ma-
chine doesn’t have enough time to read
the input. So when considering sublin-
ear time we’re generally talking about
approximation algorithms.

The reason why logarithmic space is interesting is because it con-
tains problems that can be solved using a constant number of pointers
(that point into the input) and counters (counting up to a polynomial
in the length of the input).

Generalized Geography

Geography is a game where two players take turns naming locations.
Each location named must start with the last letter of the previous
location and locations cannot be repeated. So if Alice and Bob are
playing the game and Alice says “Boston,” then Bob can say “Naples,”
Alice can then say “Shanghai,” so on and so forth. A player loses when
they are unable to respond, which means the other player wins.

This game can be modeled as a directed graph! Each vertex in the
graph corresponds to the name of a location. For two locations li and lj,
if lj starts with the same letter that li end with, then there is a directed
edge li → lj. Alice and Bob take turns selecting vertices in the graph to
produce a path. If a player ever ends up in a state where they cannot
extend the path without repeating a previously selected vertex, then
they lose and the other player wins.

Boston Naples

Shanghai

Istanbul

Laval

London

Figure 2: Geography game modeled as
a directed graph, players Alice and Bob
take turns selecting vertices. Alice is rep-
resented as red and Bob is represented
as blue.

The game played is: Boston, Naples,
Shanghai, Istanbul, London. After Al-
ice selects London, Bob loses because he
cannot select any other vertices.

The game Generalized-Geography (GG) has the same rules, ex-
cept Alice and Bob are now playing on an arbitrary directed graph G
from the starting vertex s. We say that a player has a winning strategy if
they can always win even if the other player plays optimally. In other

3

words, Alice has a winning strategy if regardless of what Bob does,
Alice can always counter Bob’s moves to force a win.

GG = {⟨G, s⟩ : Alice has a winning strategy starting from s}

Theorem 1. GG ∈ PSPACE
It’s also worth thinking about this game
in terms of quantifiers. There exists a
first move for Alice, such that whatever
the first move of Bob, Alice can counter
it, whatever the second move of Bob, Al-
ice can counter it, ... all the way until
Alice counters Bob’s last move.

The main idea is to reframe “Alice has a winning strategy” into the
equivalent statement “There exists a move that Alice can make such
that Bob does not have a winning strategy.” This gives us the follow-
ing recursive algorithm:

M: On input ⟨G, s⟩:

1. If s has no outgoing edges, Alice cannot win, so Reject.

2. For every vertex v such that there exists edge s → v in G:

i. Remove all edges that include s in G to form G′.

ii. Recursively call M on ⟨G′, v⟩.

3. If all of the calls accept, Reject. Otherwise (if at least one call
rejects), Accept.

Players take turns selecting vertices in the game, so the recursive
call at Step 2.ii shifts the perspective from Alice to Bob. The value
returned from each call answers whether Bob has a winning strategy
given that Alice selected vertex v. If all of the calls accept, that means
Alice cannot select any vertex to prevent Bob from having a winning
strategy, so she does not have a winning strategy. If at least one call
rejects, that means there is a way for Alice to select a vertex to prevent
Bob from having a winning strategy, so she has a winning strategy.

To show that GG is in PSPACE, M must run in polynomial space.
This algorithm is a depth first search, so the space used depends on
what is stored on the recursion stack. The recursion depth is O(|V|)
because we do not allow vertices to be repeated and at each level of
the recursion we keep track of one additional vertex, which means the
recursion stack uses a linear amount of space. We also need to store
original graph G which also takes a linear amount of space. Therefore,
M uses linear space.

Theorem 2. GG is PSPACE-hard.

Proof. We proved this during lecture via polynomial time reduction
from PSPACE-complete problem Formula-Game.

Corollary 1. GG is PSPACE-complete.

4

L and NL

The question of L ?
= NL is still open. How do we answer it? We can

start by borrowing the tools developed for understanding P v. NP and
adapt them to L vs. NL. One such tool is “completeness,” where NL-
complete languages are in some ways the most difficult languages in
NL.

Our previous definition of completeness used polynomial time re-
ducibility, but since NL is contained in P that would make all lan-
guages in NL (except ∅ and Σ∗) reducible to one another. Instead we
will use log space reducibility, denoted ≤L.

Machines that compute log space reductions are deterministic Tur-
ing machines with three tapes: a read-only input tape; a write-only
output tape; and a read/write work tape that contains at most O(log n)
symbols. They are called log space transducers, shown in Figure 5. Note that the output tape may contain a

polynomial number of symbols!

Tf

read-only input tape, n

read/write work tape, O(log n)

one way write-only output tape, poly(n)

Figure 3: Figure of a log space trans-
ducer.

Theorem 3. If A ≤L B and B ∈ L, then A ∈ L.

Proof. Given that A ≤L B, this means there exists a log-space trans-
ducer Tf which computes the reduction f . Furthermore, let MB be the
log-space Turing Machine that decides B. To show that A ∈ L we will
construct a log-space Turing Machine MA that decides A.

A naive construction of MA would be to have MA simulate Tf on
input w and store its output, f (w), on the work tape. Then it would
simulate MB on f (w) and accept if MB accepts. Otherwise, it rejects.
The issue is that f (w) can have length polynomial in the input, and
our work tape only has O(log n) space. The “recomputation trick” might seem

strange because the algorithm is repeat-
ing a lot of work! That’s rather inef-
ficient, no? Certainly it’s inefficient in
terms of time, but that’s not what we’re
optimizing for, we’re trying to minimize
space!

Instead, we construct MA such that it simulates MB on f (w), but
it recomputes the symbols of f (w) on an as-needed basis. When MA

simulates MB it keeps track of where MB’s head would be on f (w).
Each time MB’s head moves, that means it sees a different symbol of
f (w). In order for the simulation to continue, MA must know what
that symbol is, so it simulates Tf on w from the beginning. But im-
portantly, it discards all of the output except for the desired symbol.

5

Now that MA knows the symbol under MB’s head, the simulation can
proceed. This entire process is illustrated in Figure 4. Lastly, if MB

accepts then accept. Otherwise, reject.

MB WT MB head pos Tf WT

MB’s head position changes

MB WT MB head pos Tf WT

PAUSE MB simulation

START Tf simulation (from beginning)

Discard all outputs from Tf until desired symbol f (w)[i]

MB WT MB head pos Tf WT

Use f (w)[i] to RESUME MB simulation

STOP Tf simulation

MB WT MB head pos Tf WT

f (w)[i]

(MA’s WT)

1

2

3

4

Figure 4: Illustration of the “recomputa-
tion” trick on MA’s working tape (WT).
A section of MA’s WT is used for the
simulation of MB on f (w), and another
section is used for the simulation of Tf
on w. Parts of the tape that are active are
colored blue, and those that are inactive
are colored red.

[1-2] When MB’s head position
changes, the simulation for MB is
paused and the simulation for Tf on w
starts from the beginning.

[3] All outputs from the simulation of
Tf are discarded until the desired sym-
bol, f (w)[i], is obtained.

[4] Use that symbol to resume the MB
simulation and stop the Tf simulation.

At any point during the simulation, MA’s working tape will contain
the contents of MB’s and Tf ’s working tapes, a counter keeping track
of MB’s head position, and a single symbol of f (w), all of which take
logarithmic space to store.

Theorem 4. If A ≤L B and B ≤L C, then A ≤L C.

Proof. Since A ≤L B there exists a log-space transducer Tf which com-
putes the reduction f , where for all strings w,

w ∈ A ⇐⇒ f (w) ∈ B.

6

Similarly, since B ≤L C there exists Tg computing the log-space reduc-
tion g, where for all strings w,

w ∈ B ⇐⇒ g(w) ∈ C.

To show that A ≤L C, we will construct a log-space transducer Tg◦ f

that computes g ◦ f . This is because for input w,

w ∈ A ⇐⇒ g(f (w)) ∈ C.

The machine Tg◦ f cannot simply run Tf and then Tg on the input
because that would involve writing f (w) on the working tape, but
f (w) may be polynomial in length. Using the “recomputation trick”
described in the proof of Theorem 3, we will instead recompute the
symbols of f (w) on an as-needed basis.

On input w, Tg◦ f works by simulating Tg on f (w) without storing
the entirety of it on the working tape. The machine does this by keep-
ing track of Tg’s head position on f (w). Every time a new symbol
is needed, we fire up Tf and run it on w from the beginning while
discarding the output until we get the desired symbol in f (w). The
working tape of Tg◦ f will store the contents of Tg and Tf ’s working
tapes, a counter for the head position of Tg, and a symbol of f (w),
which takes up logarithmic space.

Strongly-Connected is NL-complete

Definition 3. For a directed graph G, if for every pair of vertices u, v ∈
V(G) there is a path from u to v and a path from v to u, then G is said to be
strongly connected.

We can then define the language Strong-Conn as follows,

Strong-Conn = {⟨G⟩ : G is a strongly connected directed graph}.

Theorem 5. Path ≤L Strong-Conn.

Proof. Construct a log-space reduction f from Path to Strong-Conn,
f (⟨G, s, t⟩) = ⟨G′⟩. The idea is to construct G′ by making a copy of G
and adding some additional edges such that if there exists an s-t-path
in G, then we can use this path to get between any two vertices in G′.

Concretely, G′ has the same vertices as G and every edge in G is
also in G′. For every vertex v ∈ V(G), create edges t → v and v → s
in G′. This reduction is computable in logarithmic space because it
copies the graph G from the input to the output tape. Then it steps
through the vertices of G and puts two new edges (v → s, t → v) onto
the output tape for each v.

7

u

v

s t

Figure 5: Construct G′ by adding addi-
tional edges, colored blue, to the graph
G and using the s-t-path in G (if it exists)
to get between any two vertices.

To prove correctness, if ⟨G, s, t⟩ ∈ Path then there is an s-t-path in
G (denoted s ⇝ t). Now given any vertices u, v ∈ V(G′) there are
paths

u → s⇝ t → v,

v → s⇝ t → u.

Therefore, G′ is strongly connected and ⟨G′⟩ ∈ Strong-Conn.
For the other direction, if f (⟨G, s, t⟩) = ⟨G′⟩ ∈ Strong-Conn, then

by definition there exists a path from s to t in G′. Furthermore, this
path is made of edges that were originally in G. To see this, note that
edges added as part of the reduction are either directed into s or out
from t. These edges cannot be included in an s-t-path because they
would be part of a loop starting and ending at s or t, which can always
be excluded. Therefore, G has a path from s to t and we can conclude
that ⟨G, s, t⟩ ∈ Path.

Theorem 6. Strong-Conn ∈ NL.

Proof. Construct a nondeterministic Turing machine N that decides
Strong-Conn in log space. On input ⟨G⟩, M iterates deterministically
over all pairs of vertices u, v in G. For each pair it nondeterministically
guesses a path of length at most |V| from u to v vertex-by-vertex. Re-
ject if any two vertices do not have a path connecting them. Otherwise,
accept.

If the graph is strongly connected, then some sequence of guesses
will find the path for each pair of vertices, so N accepts. Otherwise,
no sequence of guesses will succeed for a pair of vertices, so N rejects.
Keep in mind that we only guess a path of length at most |V| to keep
our number of guesses finite.

Keeping track of vertices u, v requires two pointers which takes log-
arithmic space to store. Furthermore, when guessing the path vertex-
by-vertex all that is stored is a pointer to the current vertex as well

8

as counter keeping track of the path length. Therefore, N runs in log
space.

Corollary 2. Strong-Conn is NL-complete.

	Recitation 9: Space Complexity
	Space Complexity Classes
	Generalized Geography
	L and NL
	Strongly-Connected is NL-complete

