
Recitation 9: Space Complexity

In this recitation, we will:

• Review the definitions of space complexity and space complexity
classes such as PSPACE and NPSPACE.

• Review how space complexity is related to time complexity.

• Use an example to practice analyzing space complexity.

• Motivate using polynomial-time reductions in the definition of PSPACE-
hardness.

• Use an example to illustrate the relationship between PSPACE-hardness
and NP- and coNP-hardness (the former implies the latter).

Some recitation sections reviewed the proof that TQBF is PSPACE-
complete. Since the proof is described in detail in the textbook (Theo-
rem 8.9, pp. 339–341), we’ll omit it in the notes here.

Space Complexity Classes

Let’s begin by reviewing the definitions of space complexity for deter-
ministic and nondeterministic TM deciders.

Definition 1. For f : N → N with f (n) ≥ n,1 we say a deterministic TM 1 At this point we only define space com-
plexity for f (n) ≥ n. Sublinear space
complexities will be defined next week
using a model of computation that is
based on but slightly different from the
standard Turing machine. The reason
is that we want to allow the TM to at
least be able to read the entire input, and
the current definition does not allow that
when f (n) < n.

decider M runs in f (n) space if the maximum number of different tape cells
M scans on any input of length n is f (n).

The space complexity class SPACE(f (n)) is defined to be all languages A
for which there is a deterministic TM that decides A in O(f (n)) space.2

2 Note that there’s a big-O in the defini-
tion here.

Definition 2. For f : N → N with f (n) ≥ n, we say a nondeterministic
TM decider N runs in f (n) space if the maximum number of different tape
cells N scans on any branch of its computation on any input of length n is
f (n).

The space complexity class NSPACE(f (n)) is defined to be all languages
A for which there is a nondeterministic TM that decides A in O(f (n)) space.

Similar to polynomial-time complexity classes P and NP, we can
define polynomial-space complexity classes PSPACE and NPSPACE:

2

Definition 3. PSPACE is the class of all languages decided by a polynomial-
space deterministic TM, i.e.,

PSPACE :=
∞⋃

k=1

SPACE(nk). (1)

Definition 4. NPSPACE is the class of all languages decided by a polynomial-
space nondeterministic TM, i.e.,

NPSPACE :=
∞⋃

k=1

NSPACE(nk). (2)

Note that, while P
?
= NP is an open problem, it is known that

PSPACE = NPSPACE. This follows from Savitch’s theorem, which
states that simulating nondeterminism can be done with at most quadratic
overhead in space. In other words, an f (n)-space nondeterministic TM
always has an [f (n)]2-space deterministic TM that decides the same
language.

Relationship between space complexity and time complexity

Given that a TM runs in space f (n), what can we know about its time
complexity t(n)? Intuitively, the running time can’t be too short—
otherwise the TM doesn’t even have enough time to reach f (n) tape
cells. On the other hand, since there are finitely many configurations
that use at most f (n) space, the TM can’t take too much time or else it
must repeat a configuration and the TM will loop. This is formalized
in the following theorem.

Theorem 1. If a TM runs in space f (n) (f (n) ≥ n), then its time complexity
t(n) must satisfy

t(n) ≥ f (n) (3)

and
t(n) = 2O(f (n)). (4)

Proof. Equation (3): Since a TM can scan at most as many tape cells as
the number of steps it took, t(n) ≥ f (n).
Equation (4): There are N = |Q| f (n)|Γ| f (n) TM configurations that
have non-blank symbols only on the leftmost f (n) tape cells. Thus, if
a TM that uses f (n) space takes more than N time steps on an input
of length n, some configuration must have been repeated and the TM
loops, a contradiction. Thus,

t(n) ≤ |Q| f (n)|Γ| f (n) = 2lg |Q|+lg f (n)+ f (n) lg |Γ| = 2O(f (n)). (5)

3

Try to convince yourself that Theorem 1 also holds for nondeter-
ministic TMs with essentially the same proof.

Due to Theorem 1, we get that a polynomial-space algorithm runs
in at least polynomial time and at most exponential time.3 Similarly, a 3 Exponential time refers to 2O(nk) for

some k.nondeterministic polynomial-space algorithm runs in at least nonde-
terministic polynomial time. As a result,

P ⊆ PSPACE ⊆ EXPTIME and NP ⊆ NPSPACE. (6)

Furthermore, recall that P ⊆ NP, coNP and PSPACE = NPSPACE.
Combining all these results together, we get

P ⊆ NP, coNP ⊆ PSPACE = NPSPACE ⊆ EXPTIME. (7)

Note that we get coNP ⊆ PSPACE from the fact that NP ⊆ PSPACE

and that PSPACE is a deterministic complexity class and thus closed
under complement (i.e., PSPACE = coPSPACE).

The above relationships are summarized in the following diagram:

P

NP coNP

PSPACE

= NPSPACE

EXPTIME

Figure 1: Relationships between time
and space complexity classes.

Space complexity analysis

Let’s use an example to gain intuition for analyzing space complexity.

Example 1. Let

MINFORMULA =

{⟨ϕ⟩ | boolean formula ϕ has no smaller equivalent formula}. (8)

4

Here, we say two formulas are equivalent if they evaluate to the same truth
value on all variable assignments. We say a formula ϕ′ is smaller than ϕ if
the string representation of ϕ′ is shorter than that of ϕ in whatever encoding
we’re using, i.e., |⟨ϕ′⟩| < |⟨ϕ⟩|.

Show that MINFORMULA ∈ PSPACE.

Proof.
Approach 1 (Direct TM construction):

The following TM T decides MINFORMULA in polynomial space
using a brute-force approach:

T = “On input ⟨ϕ⟩,

1. Iterate through every formula ϕ′ smaller than ϕ. For each such ϕ′,

(a) Check whether ϕ′ is equivalent to ϕ by iterating through every
variable assignment and checking that they always agree in truth
value.

(b) If ϕ′ is equivalent to ϕ, then reject.

2. If no smaller equivalent formula was found, then accept.”

Analysis: At any given moment, the tape contains ⟨ϕ⟩, ⟨ϕ′⟩, and the
variable assignment to them. Each of these three components uses
space linear in the size of ⟨ϕ⟩, so the total space complexity is O(n).
Commentary: Note that the algorithm we gave is very brute-force,
which we often cannot afford to do if we want a polynomial-time al-
gorithm. But space gives us a lot more freedom, allowing us to reuse
the same space to try a number of things exponential in the amount of
that space (this should remind you of Theorem 1!).

Approach 2 (Using NP ⊆ PSPACE = NPSPACE):
Note that deciding whether two given formulas ϕ, ϕ′ are inequivalent

is in NP since the certificate is the variable assignment on which they
differ. Since NP ⊆ PSPACE, there is a deterministic polynomial-space
TM M for it.

Now, the following non-deterministic TM N decides MINFORMULA
in polynomial space:

N = “On ⟨ϕ⟩,

1. Guess a smaller formula ϕ′ and check whether it’s inequivalent to
ϕ using M. If not (i.e., they’re equivalent), then accept.”

This shows that MINFORMULA ∈ NPSPACE. But NPSPACE =

PSPACE, and PSPACE is closed under complement, so MINFORMULA ∈
PSPACE, as desired.
Commentary: Because of Savitch’s theorem, we have more freedom to
use nondeterminism since it can be simulated by a deterministic pro-
cedure with at most quadratic overhead in space. As a result, if it

5

doesn’t take too much time to “check if something with some prop-
erty exists” by guessing that “something” nondeterministically, then
we can also do the same check deterministically without using too
much space. (In our case, that “something” is a variable assignment
on which ϕ and ϕ′ differ, or a ϕ′ smaller than ϕ that’s equivalent.) And
an explicit construction for conducting this deterministic check was
given in Approach 1 above, i.e., you iterate through all possible things
and checking whether they have the property in question.

A question you may have about Approach 1 above is: how exactly do
you iterate through all smaller formulas ϕ′ (step 1), and how exactly do
you iterate through all variable assignments (step 1(a))? One approach
is recursion.4 We’ll describe the recursive algorithm in more detail, 4 In practice, recursion can result in a

lot of overhead (as illustrated below),
so an equivalent iterative algorithm may
be preferred. How would you iterate
through, e.g., all possible variable as-
signments iteratively? Hint: How do you
count in binary from 0 up to 2k − 1?

since the kind of space complexity analysis done here applies generally
to recursive algorithms. Let’s illustrate with step 1(a), which tries all
variable assignments to check ϕ and ϕ′ agree on all of them.

The recursive algorithm looks like:
f = “On input ⟨ϕ, ϕ′, x1, . . . , xi⟩ where 0 ≤ i ≤ k (k is the number of

variables) and x1, . . . , xi is a partial assignment to the variables,

1. If i = k, then we’ve finished assigning all variables, so we return
whether ϕ(x1, . . . , xk) = ϕ′(x1, . . . , xk).

2. Set xi+1 = 0. Recursively call f on ⟨ϕ, ϕ′, x1, . . . , xi+1⟩.

3. Set xi+1 = 1. Recursively call f on ⟨ϕ, ϕ′, x1, . . . , xi+1⟩.

4. Accept if both recursive calls in step 2 and step 3 accept. Otherwise,
reject.”

At any point during the execution of a recursive algorithm, the
memory consists of multiple stack frames in a stack. The stack frame
at the bottom of the stack consists of local variables by the top-level
function call to f (i = 0); when that function call recursively calls f
in step 2 or step 3,5 a new stack frame is created and pushed onto 5 When a function call returns, its stack

frame is destroyed, so when step 2’s
function call returns, the space that the
step 2 function call was using can now
be reused for the stack frame of step 3’s
function call.

the stack, which contains the local variables to that recursive call; and
then when that function call further recursively calls f , yet another
stack frame is created and pushed onto the stack; so on and so forth,
until we reach the base case of the recursion. As a result, the number
of stack frames is equal to the depth of the recursion, which in our
case is k + 1. The space complexity is thus

(recursion depth)× (space taken up by each stack frame)

= (k + 1)× O(n) = O(n2). (9)

We’ve used the fact that each stack frame contains the local variables
ϕ, ϕ′, x1, . . . , xi+1, which take up O(n) space.

6

So we’ve shown that the above recursive algorithm takes polyno-
mial space. But before we said it would take O(n) space, and now
we’re taking O(n2) space! The reason is that we’re being quite space-
inefficient here. Every time we make a recursive call, we’re copying
ϕ, ϕ′, x1, . . . , xi, xi+1 into the new stack frame, which is an unnecessary
waste of space. Instead, we can keep all of them as global variables
that all recursive calls have access to, so that at any given point the tape
has the global variables ϕ, ϕ′, x1, . . . , xi (O(n) space) and the O(k) stack
frames created so far, each of which now occupies only O(1) memory,
and we recover the O(n) + O(k) = O(n) space complexity.

Trying all possible formulas shorter than ϕ can be done recursively
as well, where we use the same recursive algorithm to try all possible
strings of length less than |⟨ϕ⟩| and ignore those that are not syntacti-
cally valid formulas.

Why polynomial-time reductions for defining PSPACE-hardness?

Recall the definition of PSPACE-hardness:

Definition 5. A language A is PSPACE-hard if every language B ∈ PSPACE

is polynomial-time mapping-reducible to it, i.e., B ≤p A ∀B ∈ PSPACE.

You might think it’s more natural to use polynomial-space reduc-
tions to define PSPACE-hardness, but in fact allowing the reduction to be
as powerful as the class for which hardness is being defined defeats the purpose
of defining hardness. By that we mean that, since a polynomial-space
computable function can decide polynomial-space languages, using
polynomial-space reductions renders every non-trivial6 language PSPACE- 6 Here we’ll consider any language other

than ∅ and Σ∗ to be non-trivial.hard since the reduction is powerful enough to decide B, and we failed
to formalize the notion of “the hardest problems in PSPACE”.

Lemma 1. If PSPACE-hardness were defined relative to polynomial-space
reductions, then every language A other than ∅, Σ∗ is PSPACE-hard.

Proof. Take any A ̸= ∅, Σ∗. Suppose x ∈ A and y ̸∈ A.
For any B ∈ PSPACE, we have the following polynomial-space map-

ping reduction to A:

f (w) =

x if w ∈ B

y if w ̸∈ B
. (10)

Since B ∈ PSPACE, checking whether w ∈ B can be done in polynomial
space, so this reduction runs in polynomial space.

This should remind you of two pset problems where you saw es-
sentially the same thing:

7

• pset3 q2(b), where every non-trivial language is hard for the class of
decidable languages under mapping reductions, since computable
functions can decide decidable languages;

• pset4 q3, where every non-trivial language is P-hard under polynomial-
time reductions, since polynomial-time computable functions can
decide polynomial-time decidable languages.

The takeaway is that, when choosing the type of reduction for defining
hardness for a complexity class, we don’t want to allow the reduction
to be so powerful that it can just decide all problems in that complexity
class.

While this gives us an upper bound on how powerful a reduction
should be allowed to be, what are some other considerations when
choosing the type of reduction used to define hardness?

One thing we can say is that the reduction can’t be too restricted,
since otherwise we can’t do transformations that we would normally
consider “easy” transformations. A reasonable definition of “easy” in
practice is “polynomial-time”, so we can just go with that.

Another important consideration is the implications of our defini-
tion of PSPACE-hardness. For example, the reason the following theo-
rem holds is because we had used polynomial-time reductions in the
definition.

Theorem 2. If there’s a PSPACE-hard problem A that is in P, then P =

PSPACE.

Proof. For every B ∈ PSPACE, decide B in polynomial-time by trans-
forming its input using the polynomial-time reduction to A and using
the polynomial-time decider for A.

Note that the resultant algorithm runs in polynomial time exactly
because the reduction was required to run in polynomial time by
definition. If the reduction was allowed to be more powerful (e.g.,
polynomial-space), then the algorithm no longer works and we would’ve
failed to show that B ∈ P.

Since the question P
?
= PSPACE is an important open problem, The-

orem 2 is significant since it tells us that, to show P = PSPACE, it
suffices to find just one PSPACE-hard problem decidable in polyno-
mial time. It is thus desirable to define PSPACE-hardness relative to
the kind of reduction that would allow us to have Theorem 2, and
polynomial-time reductions do the job.

Another nice consequence of the definition that uses polynomial-
time reductions is that Theorem 3 in the next section would hold,
so we successfully capture the intuition that the hardest questions in
PSPACE should be at least as hard as the hardest questions in NP since

8

NP ⊆ PSPACE. We don’t get this nice result if PSPACE-hardness were
defined using a more powerful kind of reduction than that used to
define NP-hardness.

PSPACE-hardness implies NP-hardness and coNP-hardness

As an example, let’s show that the PSPACE-complete language TQBF
is NP-hard.

Example 2. TQBF is NP-hard.

Proof. Since every PSPACE language is polynomial-time reducible to
TQBF and NP ⊆ PSPACE, this implies that every NP language is
polynomial-time reducible to TQBF, i.e., TQBF is NP-hard.

(As an exercise with reductions, try to give an alternative proof
using a reduction from SAT.)

It is left as an exercise to the reader to show the following more
general statement:

Theorem 3. Every PSPACE-hard language is both NP-hard and coNP-hard.

This captures the intuition that the hardest languages in PSPACE

are at least as hard as the hardest languages in NP and coNP, which
one might expect from the fact that NP, coNP ⊆ PSPACE.

	Recitation 9: Space Complexity
	Space Complexity Classes
	Relationship between space complexity and time complexity
	Space complexity analysis
	Why polynomial-time reductions for defining PSPACE-hardness?
	PSPACE-hardness implies NP-hardness and coNP-hardness

