
Recitation 10: Space Complexity

In this recitation, we’ll review the definitions of the space complexity
classes we’ve seen so far and the intuition behind the proof of Sav-
itch’s theorem, and then we’ll show that generalized geography can
be solved in PSPACE.

Space complexity classes

Recall that SPACE(s(n)) is defined as the set of languages decided
by a deterministic Turing machine that uses only O(s(n)) tape cells.
Likewise, we defined NSPACE(s(n)) to be the set of languages decided
by an nondeterministic Turing machine that uses only O(s(n)) tape cells
in every thread of nondeterminism (similar to how we defined NTIME).

Definition 1.

PSPACE =
⋃
k

SPACE(nk)

NPSPACE =
⋃
k

NSPACE(nk)

These definitions use the standard single-tape Turing machine model
that we’ve used so far in this class. However, this breaks down when
we consider sublinear (i.e., o(n)) space complexity bounds; for exam-
ple, SPACE(log n) would fail to make sense since a single-tape Turing
machine bounded to using only log n cells won’t even have enough
space to store its entire input string.1 1 Strictly speaking, such a machine

would be bounded to k log n cells for
some constant k (independent of n). But
no matter the value of k, for sufficiently
large n we will have k log n < n.

To remedy this, we shift our definitions of SPACE and NSPACE to
use a different model of computation: a two-tape Turing machine with
a read-only input tape and a limited-capacity read/write work tape
(Figure 1 shows the case where the work tape is limited to O(log n)
cells). We then define SPACE(s(n)) as the set of languages decidable
by such a machine where the size of the work tape is O(s(n)); this
allows us to have a well-defined notion of space complexity even when
s(n) < n.

It turns out that the updated definitions of PSPACE and NPSPACE

(and any other Ω(n) space complexity class) agree with our old ones,

2

M

read-only input tape, n

read/write work tape, O(log n)

Figure 1: 2-tape Turing machine that is
restricted to space O(log n).

so this definition serves as a natural extension of our notion of space
complexity to the sublinear setting. To wit, we can now use this to
define the classes L and NL:

Definition 2.

L = SPACE(log n)

NL = NSPACE(log n)
Seeing how we’re defining sublinear
space bounds, a natural question might
be why we don’t have something similar
for time? Turns out we do! Note that
with a sublinear time bound, the ma-
chine doesn’t have enough time to read
the input. So when considering sublin-
ear time we’re generally talking about
approximation algorithms.

We can think of L as the class of problems that can be solved using
only a constant number of pointers (that reference a part of the input)
and counters (counting up to a quantity that is polynomial in the input
length), since it takes log n bits to store an index between 0 and n. In
particular, recall that the language

PATH = {⟨G, s, t⟩ : G is a directed graph with a path from s to t}

is in NL, since an NL machine can simply guess a sequence of edges
starting from s and only needs to store the most recently visited node
and the target t.

You may ask why these complexity classes are interesting — given
the parallelism between L/NL and P/NP, results concerning L and NL

might bring us closer to solving the P
?
= NP problem. (For example,

as you’ll see in lecture, we know that NL = coNL, but NP ?
= coNP is

still an open question.)

Savitch’s theorem

Given this, let us revisit Savitch’s theorem:

Theorem 3 (Savitch’s theorem). Let f : N → R+ be a function such
that f (n) ≥ log n for all n. Then, NSPACE(f (n)) ⊆ SPACE(f 2(n)). In this class, the notation f 2(n) always

refers to f (n)2, not f (f (n)).
Corollary 4. PSPACE = NPSPACE.

This is a pretty surprising result! The naïve way of simulating non-
determinism would give us an exponential blowup in both space and
time complexity, but it turns out that by being a little clever, we can

3

reduce the space blowup to be only quadratic. (In the time case, it’s
an open question whether we can do any better than exponential.)

The proof of Savitch’s theorem involved considering a recursive al-
gorithm for determining if a given configuration of our nondetermin-
istic Turing machine yields a given end configuration within a certain
number of steps; by repeatedly bisecting the search space, we were
able to come up with an algorithm that requires only O(f 2(n)) space.

More details on that proof can be found in Section 8.1 of the text-
book; instead of reviewing that, let’s consider a simpler analogue of
this theorem to build intuition about how the algorithm works.

Proposition 5. PATH ∈ SPACE(log2 n).

This is of course a simple corollary of Savitch’s theorem (since PATH ∈
NL), but let us try to prove it directly; the argument proceeds quite
similarly to that of Savitch’s theorem itself.

Proof. Consider the following algorithm for determining if a directed
graph G = (V, E) has a path from s to t that is of length ≤ k.

canreachG = “On input s, t, k:

1. If k = 1, then check if s = t or (s, t) ∈ E. If either check passes,
then accept; otherwise, reject.

2. If k > 1, then for each v ∈ V:

i. Recursively call canreachG on (s, v, k/2) and (v, t, k/2). If
both calls accept, then accept.

3. Reject.”

The correctness of this algorithm follows from the fact that every
path of length k can be split into its first half and its second half.2 2 This assumes that k is even for simplic-

ity, but we could just as easily relax such
an assumption by using ⌊k/2⌋ in the first
call and ⌈k/2⌉ in the second call.

We can determine the space complexity by setting bounds on how
much space is taken before each recursive call as well as the maximum
depth of the recursion. The first is simply the inputs to the recursive
call, which take a total of O(log |V|+ log k) space to store; as for the
maximum recursion depth, that will be log k since we divide k by 2 on
each recursive call and end up on the base case when k = 1.

So, canreachG runs in space O((log |V|+ log k) · log k). We’re not
quite done yet; we now need a Turing machine that is given G as input
and determines if G has a path of arbitrary length from s to t.

Since any path from s to t can be reduced to eliminate cycles, it
suffices to decide whether G has a path from s to t that does not repeat
any vertices; i.e., we can set k = |V|. This gives us the following
machine:

4

M = “On input ⟨G, s, t⟩:

1. Let G = (V, E).

2. Run canreachG on (s, t, |V|). If it accepts, accept; if it rejects,
reject.”

By our analysis from earlier, this only requires space O(log2 n).

The canyield algorithm in the proof of Savitch’s theorem uses the
same core idea; hopefully this sheds some light on how that works.

Generalized geography

Geography is a game where two players take turns naming locations.
Each location named must start with the last letter of the previous
location, and locations cannot be repeated. So if Alice and Bob are
playing the game and Alice says “Boston,” then Bob can say “Naples,”
Alice can then say “Shanghai,” so on and so forth. A player loses when
they are unable to respond, which means that the other player wins.

This game can be modeled as a directed graph! Each vertex in the
graph corresponds to the name of a location. For two locations ℓi and
ℓj, if ℓj starts with the same letter that ℓi ends with, then there is a
directed edge ℓi → ℓj. Alice and Bob take turns selecting vertices in
the graph to produce a path. If a player ever ends up in a state where
they cannot extend the path without repeating a previously selected
vertex, then that player loses and the other player wins.

Boston Naples

Shanghai

Istanbul

Laval

London

Figure 2: A game of geography modeled
as a directed graph, with players Alice
and Bob take turns selecting vertices. Al-
ice is represented as red and Bob is rep-
resented as blue.

The game played is: Boston, Naples,
Shanghai, Istanbul, London. After Al-
ice selects London, Bob loses because he
cannot select any other vertices.

The game of generalized geography (GG) has the same rules, except
Alice and Bob are now playing on an arbitrary directed graph G with

5

a fixed starting vertex s. We say that a player has a winning strategy
starting from s if they can always win even if the other player plays
optimally. In other words, Alice has a winning strategy if regardless of
what Bob does, Alice can always counter Bob’s moves to force a win.
We can write this as a language:

GG = {⟨G, s⟩ : Alice has a winning strategy starting from s}.

Proposition 6. GG ∈ PSPACE.
It’s also worth thinking about this game
in terms of quantifiers. There exists a
first move for Alice, such that what-
ever the first move of Bob, Alice can
counter it, whatever the second move
of Bob, Alice can counter it, ... all
the way until Alice counters Bob’s last
move. In general, a poly-time solv-
able problem behind polynomially many
quantifiers is in PSPACE; that’s the
essence of what TQBF ∈ PSPACE (or
FORMULA-GAME ∈ PSPACE) tells us.

The main idea is to reframe “Alice has a winning strategy” as the
equivalent statement “There exists a move that Alice can make such
that Bob does not have a winning strategy after that move.”

Proof. Consider the following recursive algorithm for GG:

M = “On input ⟨G, s⟩:

1. If s has no outgoing edges, then Alice cannot win, so reject.

2. For every vertex v such that there exists an edge s → v in G:

i. Remove all edges that include s in G to form G′.

ii. Recursively call M on ⟨G′, v⟩.

3. If all of the calls accept, Reject. Otherwise (if at least one call
rejects), Accept.

Players take turns selecting vertices in the game, so the recursive call
at step 2.ii shifts the perspective from Alice to Bob. The value returned
from each call answers whether Bob has a winning strategy given that
Alice selected vertex v. If all of the calls accept, that means Alice cannot
select any vertex to prevent Bob from having a winning strategy, so
she does not have a winning strategy. If at least one call rejects, that
means there is a way for Alice to select a vertex to prevent Bob from
having a winning strategy, so she has a winning strategy.

To show that GG is in PSPACE, M must run in polynomial space.
This algorithm is a depth first search, so the space used depends on
what is stored on the recursion stack. Since we remove one vertex be-
fore each recursive call, the maximum depth of recursion is |V|. Before
making each call, the only information we need to store is one ver-
tex v,3 which takes log |V| space, so M requires O(|V| log |V|) space, 3 This is because we don’t have to actu-

ally construct G′ — it suffices to store the
set of visited nodes and reference that
whenever we reach step 1 in the algo-
rithm. This detail doesn’t make a huge
difference for the proof, though; if we
stored the entire graph G′ at each step,
then the space complexity would come
out to O(n2) rather than O(n log n).

which is indeed polynomial in the input size.

Theorem 7. GG is PSPACE-hard.

Proof. We proved this during lecture by giving a polynomial time re-
duction from the PSPACE-complete problem FORMULA-GAME.

Corollary 8. GG is PSPACE-complete.

6

Aside: why ≤P?

A natural question to ask at this point in the course is why the defi-
nition of PSPACE-completeness uses the seemingly arbitrary notion of
poly-time reducibility rather than something else (perhaps a notion of
poly-space reducibility?).

When we call a language A “complete” for a complexity class C,
this is not merely a property of the language and the complexity class;
the idea of “completeness” is always relative to some weaker model of
computation as compared to C. This is evident in how we motivated
NP-completeness as a concept: we care that SAT is NP-complete since
that means that a polynomial-time algorithm for SAT would allow us
to solve any NP problem with only polynomial overhead (which means
we can stay in P).

Similarly, if we had a polynomial-time algorithm for a PSPACE-
complete problem such as TQBF, then we want to have the property
that this gives us a polynomial-time algorithm for every problem in
PSPACE, since we restrict the reductions to run in polynomial time.

In particular, if we were to use polynomial-space reductions, then
not only would this lead to unhelpful circular reasoning (to use a poly-
time TQBF algorithm to solve other PSPACE problems, we first need a
way to run the poly-space reduction in poly time), but it also ends up
implying that almost every problem in PSPACE is PSPACE-complete
under this definition!

Soon, you’ll see a weaker form of reduction in class, called a logspace
reduction (≤L). It is certainly possible to define PSPACE-completeness
in terms of ≤L instead of ≤P, and this would indeed give rise to a
stronger notion of what it means for a problem to be PSPACE-complete.
Ultimately, the choice of which weaker model of computation to use In particular, if a language A is known

to be PSPACE-complete with respect to
≤L, then A ∈ L would imply that L =
PSPACE, something that would not fol-
low if we only knew that A is PSPACE-
complete with respect to ≤P. It turns
out, though, that we already know that
L ⊊ PSPACE (you’ll see this later in
the course!), so the practical utility of
PSPACE-completeness under ≤L is lim-
ited.

is dictated by which one we are most interested in for our purposes.
For NP, of course, the choice of P is pretty clear, but in principle we
could go with something weaker.

	Recitation 10: Space Complexity
	Space complexity classes
	Savitch's theorem
	Generalized geography
	Aside: why ¶?

