
Recitation 8: NP-Completeness

This recitation will give you more insight into NP-Completeness by
reviewing the intuition behind it as well as providing more examples
of how to prove a problem is NP-Complete. Reductions are daunting
at first and take some time to digest, but they are one of the most
important concepts you will take away from this class. The problems
you solve on the PSets will progressively give you more and more
experience with this line of reasoning, and you’ll be able to tackle
more abstract reductions as the semester progresses!

Definition and Intuition

Before giving the formal definition, we motivate the notion of NP-
Completeness. The question of P vs NP has been central to complexity
theory for a long time. Showing that P = NP would require proving
that every single language in NP has a deterministic polynomial-time
algorithm. Showing this directly would require putting in a lot of
effort for every single NP language. On the other hand, showing that
P ̸= NP would require that at least one problem in NP does not have
a deterministic polynomial-time algorithm. But how would we choose
this problem? Imagine spending years trying to prove that something
like COMPOSITES ̸∈ P, only to have someone show that you can
actually decide it in polynomial time! If you’re curious about this, you should

look up the AKS Primality check, which
allows you to deterministically check
whether or not a number is prime in
polynomial time.

NP-Completeness addresses both of these issues. We find a set of
the "hardest" problems in NP, meaning that a decider for one of these
languages would yield a decider for all languages in NP with only
an additional polynomial overhead. Then, if we show one of these
languages is in P, we immediately get that P = NP. For this reason, if
one wants to show P ̸= NP, an NP-Complete problem could be worth
studying, since P ̸= NP would imply all NP-Complete problems do
not have a deterministic poly-time algorithm!

One thing to keep in mind is that the tools for proving NP Com-
pleteness have strong parallels to what we used for proving undecid-
ability. Our first time proving a language, SAT, is NP complete took
substantial effort using a computation history method similar to that



2

in PCP. Similarly, our first time proving a language, ATM, was unde-
cidable took considerable effort using diagonalization. However, after
this is done, we use the power of reductions to leverage our initial
result in more quickly proving any other language NP-Complete or
undecidable. To prove A is NP-complete, we can show SAT ≤p A; to
prove B is undecidable, we can show ATM ≤m B.

Now, let’s move onto the formal definition of NP-Completeness.

Definition 1 (NP-Completeness). A language B is NP-Complete if it sat-
isfies the two following properties:

1. B ∈ NP Property 2 is known as NP-Hardness.

2. For each language A ∈ NP, we have A ≤p B

We have now formally defined what it would mean for a language
to be one of the "hardest" in NP. But how do we know such a language
actually exists? The Cook-Levin Theorem tells us that the boolean sat-
isfiability language, SAT, actually has these properties. You probably
remember the proof at a high level, and how tricky it was to make the
approach general enough so that it works for any language in NP. We
don’t have to redo this approach every time we want to show some
language B is NP-Complete, so we will generally exploit the following
result.

Theorem 1. Let C be a language in NP. If B is NP-Complete and B ≤p C, How do we prove this? Since B is NP−
COMPLETE, for all A ∈ NP, A ≤p B.
If B ≤p C, then for all A ∈ NP, A ≤p
B ≤p C, satisfying the definition of NP-
Completeness for C.

then C is NP-Complete.

Thus, once we know at least one language B is NP-Complete, we
may show that some other language C in NP is NP-Complete by giv-
ing a polynomial-time reduction from B to C. This means that B can
be any language we have previously shown to be NP-Complete, but
in practice we will often take 3SAT, where the boolean formulas have
a special 3CNF form: an AND of clauses, where each clause is an OR
of three literals. See figure (1) for a diagram of P, NP, and where
NP − COMPLETE languages fall, in the cases of both P ̸= NP and
P = NP.

Gadget Constructions

One of the reasons we often use 3SAT in reductions is that we can use
a standarized reduction technique based on constructing “gadgets”
that encode different parts of the 3SAT instance. When showing that
3SAT ≤p B we usually construct two main types of gadgets:

• Variable Gadgets: These simulate a variable by capturing whether
it is set to True or False.



3

Figure 1: On the left, we have a schema
for when P and NP may not be equal.
On the right, we have a schema for when
P = NP.

• Clause Gadgets: These simulate a clause by capturing whether the
clause is satisfied.

A useful strategy when constructing a mapping reduction f to show
A ≤p B for proving NP-completeness is considering how to relate the
two instances’ certificates. You need to show w ∈ A ⇐⇒ f (w) ∈ B.
Typically, you show this by taking a certificate for w ∈ A and con-
structing a certificate for f (w) ∈ B. Then you show the reverse: take
a certificate for f (w) ∈ B and construct a certificate for w ∈ A. Often,
the latter part involves analyzing the structure of possible certificates.
Two requirements we will repeatedly see are:

1. The reduction must enforce that each variable is assigned to true or
false, but not both.

2. The reduction must enforce that each clause has at least one true
literal.

Now it’s time to see these gadget constructions in practice.

SUBSET-SUM is NP-Complete

The SUBSET − SUM language includes pairs of numbers and targets
such that a subset of the numbers sums to the target.

Definition 2 (SUBSET-SUM). Formally, we define the language:

SUBSET − SUM = {⟨S, t⟩ |S = {x1, . . . , xk} and for some

{y1, . . . , yl} ⊆ S, we have ∑ yi = t}

For example, ⟨{5, 2, 3, 9}, 11⟩ ∈ SUBSET − SUM because 9 + 2 =

11. This problem is “hard" because the subset that works may be of
any size.

Theorem 2. SUBSET − SUM is NP-Complete.



4

Proof. In order to show that SUBSET− SUM is NP-complete, we need
to show the following:

1. SUBSET − SUM ∈ NP:
We can prove this by providing a certificate that can be checked
in polynomial time. The subset c ⊆ S is the certificate, and we
can have a verifier check whether or not all of the elements in c
sum to t in polynomial time, so SUBSET − SUM ∈ NP. We could
alternatively prove SUBSET − SUM ∈ NP by providing a NTM
which nondeterministically guesses a subset c, then tests if it sums
to t and accepts if so.

2. SUBSET − SUM is NP-hard:

We reduce from 3SAT; in other words, we show that 3SAT ≤p

SUBSET − SUM. Let ϕ be a Boolean formula with n variables
x1, . . . , xn and m clauses c1, . . . , cm. We would like to construct a
corresponding SUBSET − SUM instance ⟨S, t⟩ such that

ϕ ∈ 3SAT ⇐⇒ ⟨S, t⟩ ∈ SUBSET − SUM.

Construction
We construct the reduction from ϕ to a SUBSET − SUM instance
⟨{y1, z1, . . . , yn, zn, g1, h1, . . . , gm, hm}, t⟩ shown in the table below.
Each row is one of the numbers in S. We hope to find a subset
that sums to t, shown on the bottom.

1 2 3 4 · · · n c1 c2 · · · cm

y1 1 0 0 0 · · · 0 1 0 · · · 0

z1 1 0 0 0 · · · 0 0 0 · · · 0

y2 1 0 0 · · · 0 0 1 · · · 0

z2 1 0 0 · · · 0 1 0 · · · 0

...
. . .

...
...

...
...

yn · · · 1 0 0 · · · 1

zn · · · 1 0 0 · · · 1

g1 1 0 · · · 0

h1 1 0 · · · 0

g2 1 · · · 0

h2 1 · · · 0

...
. . .

...
gm 1

hm 1

t 1 1 1 1 1 1 3 3 3 3

In this construction we have variable gadgets and clause gadgets:



5

• Variable gadgets: For each variable xi in ϕ, we have two numbers
yi, zi ∈ S, corresponding to a true or false assignment of xi, re-
spectively. Both have a 1 in the ith column, enforcing that we can
only select either yi (representing a true assignment) or zi (repre-
senting a false assignment) for our subset, but not both. For each
yi and zi, we also have a 1 in each clause column cj where xi or
xi, respectively, occurs.

• Clause gadgets: For each clause ci, we create numbers gi, hi ∈ S,
where both gi and hi have a 1 in column ci. These act as fillers.

We choose a subset of the numbers such that each column sums to
the corresponding entry in t. Since each clause can have at most
three literals, each column can have at most five 1’s, and summing
columns will never result in a “carry."

Correctness
Let’s prove the correctness of this construction:

• ϕ ∈ 3SAT =⇒ ⟨S, t⟩ ∈ SUBSET − SUM.
Given the certificate of a satisfiable assignment to ϕ, we must
find a subset of S summing to t. For each xi, if xi is true add
yi to the subset. Otherwise, add zi to the subset. Since we only
select either yi or zi for each variable, the first n columns in our
construction will each sum to 1, as desired. Additionally, since
ϕ is satisfied, each clause must have at least one true literal, and
therefore at least one 1 in the top right quadrant. For each clause,
select one or both of gi and hi such that each clause column will
sum to 3 in t, as desired.

• ⟨S, t⟩ ∈ SUBSET − SUM =⇒ ϕ ∈ 3SAT.
Given the certificate of a valid subset, we must find a satisfying
assignment to ϕ. Only one of yi or zi can be in our subset. If we
have yi, let xi be true. Otherwise, let xi be false. By nature of our
subset construction, each clause column must have at least one
1, and thus each clause must have at least one true literal. Thus,
our assignment is valid and satisfies ϕ.

Runtime
Finally, let’s ensure we can construct ⟨S, t⟩ in polynomial time. The
size of our table is O((2n + 2m)2), which is polynomial in the size
of ϕ, as desired.



6

VERTEX COVER is NP-Complete

Given an undirected graph G, a vertex cover of G is a subset of its
nodes touching every edge in G.

Definition 3 (VC). Formally, we define the language

VC = {⟨G, k⟩ | G has a vertex cover of size at most k}.

Theorem 3. VC is NP-complete.

Proof. As usual, in order to prove VC is NP-Complete, we must show
the following:

1. VC ∈ NP:
We first realize that VC ∈ NP because we can have a certificate c
be a set of k vertices that forms a vertex cover. A verifier can easily
check that every edge has at least one endpoint from those k vertices
from the certificate.

2. VC is NP-hard:
We reduce from 3SAT; in other words, we show that 3SAT ≤p VC.
Let ϕ be a Boolean formula with n variables x1, . . . , xn and m clauses
c1, . . . , cm. We would like to construct a corresponding VC instance
⟨G, k⟩ such that

ϕ ∈ 3SAT ⇐⇒ ⟨G, k⟩ ∈ VC.

Construction
Again, we will make both variable gadgets and clause gadgets.

• Variable gadgets: For each variable xi, we make a connected
component with a node labeled xv

i and a node labeled xv
i , con-

nected by an edge. Note that we only need to select one of xv
i

or xv
i to cover this edge, representing how we only assign each

variable to either true or false.

Figure 2: A variable gadget for x1.

• Clause gadgets: For each clause ci, we make a connected com-
ponent with one node for each of its three literals, connected in a
triangle. See figure (3) for an example.

To connect these components, we draw edges between each xv
i and

xc
i , and each xv

i and xc
i . Finally, we choose k = n + 2m because for

each of the n variables we add one vertex to the cover and for each



7

Figure 3: A clause gadget for
(x1 ∨ x1 ∨ x1).

Figure 4: Our construction for
ϕ = (x1 ∨ x2 ∨ x1)∧ (x1 ∨ x2 ∨ x1). A sat-
isfying assignment sets x1 to false and x2
to true. The nodes in the corresponding
vertex cover are outlined in blue.

of the m clauses we add two vertices to the cover. See figure (4) for
an example construction.

Correctness Let’s prove the correctness of this construction:

• ϕ ∈ 3SAT =⇒ ⟨G, k⟩ ∈ VC.
Given a certificate of a satisfying assignment, we must find a size
k vertex cover. For each xi, if xi is true add node xv

i to the cover.
This will cover the edges within the variable gadgets. Since we
have a satisfying assignment, we know at least one literal in each
clause is true. For each clause, choose some true literal. Add the
other two to the vertex cover. These will cover the edges in the
clause gadgets. Now we have n + 2m = k vertices in our cover.
Let’s consider the edges between the variable and clause gadgets.
Those connecting true literals will be covered by vertices from the
variable gadgets. Those connecting false literals must be covered
by vertices in the clause gadgets. Therefore, we have a valid
vertex cover of size k.

• ⟨G, k⟩ ∈ VC =⇒ ϕ ∈ 3SAT.
We look at the variable gadgets to select an assignment. For each
xv

i in the vertex cover, assign xi to true. For each xv
i is in the

vertex cover, assign xi to false. By our construction and because
k = n + 2m, we cannot have a vertex cover containing both xv

i
and xv

i (both a false and true assignment). Furthermore, since we
can add at most two nodes from each clause gadget to the cover,
we must have at least one true literal in each clause. Thus we
have a valid satisfying assignment.



8

Runtime
Finally, we show that we can construct ⟨G, k⟩ in polynomial time.
To see this, note that graph G has 2n + 3m nodes and at most (2n +

3m)2 edges, so it is polynomial in terms of the input and can be
constructed in polynomial time.

SAT ≤p 3SAT

This section is meant to fill in a gap you may have noticed in our
usual chain of NP-Completeness reductions. We know that SAT is
NP-Complete from the Cook-Levin Theorem. Then, we have often
shown that other problems are NP-Complete by giving a reduction
from 3SAT, which allows us to exploit the structure of 3CNF formulas.
But how exactly does the NP-Completeness of 3SAT follow from SAT?

Theorem 4. 3SAT is NP-Complete.

Proof. Note that 3SAT ∈ NP since we can give a satisfying assignment
as a certificate, then the verifier just has to check that this assignment
satisfies every clause.

We now show SAT ≤p 3SAT. To begin, we observe that we can
interpret any boolean formula as a binary tree. If you are familiar
with logical circuits, then that may be a useful way to think about this
transformation. The key is that any AND and OR operation only acts
on two logical values, and NOTs only apply to one, so we can establish
a natural “order” on the operations based on any parentheses. For
example, the formula

ϕ = (x1 ∨ x2) ∧ (x1 ∧ x3)

can be transformed into the following binary tree:

∧

∧

x3x1

∨

x2x1

To construct the 3CNF formula ϕ′, we will first introduce a new set
of variables, one for each node in the binary tree:



9

∧(z1)

∧(z3)

x3x1

∨(z2)

x2x1

Now the 3CNF formula will be equivalent to checking whether
there is a consistent evaluation of this binary tree that makes the root
True, meaning z1 = 1. This means that our first clause will just check
for this, so we will have (z1 ∨ z1 ∨ z1) in ϕ′. Now, we need the zi’s to
agree with the operation they represent, so we need to create clauses
that check for this consistency. The idea behind these will be to look at
the truth table of the operation, and then create 3CNF clauses that are
equivalent. For example, let’s create the clauses that enforce z2 being
consistent with x1 ∨ x2. The truth table is as follows:

x1 x2 z2

0 0 1

0 1 0

1 0 1

1 1 1

We can rewrite this as four implications that must all be satisfied:

• x1 ∧ x2 =⇒ z2

• x1 ∧ x2 =⇒ z2

• x1 ∧ x2 =⇒ z2

• x1 ∧ x2 =⇒ z2

It turns out we can actually write each of these implications as a
3CNF clause. First we will rewrite the implication in Boolean logic,
and then use DeMorgan’s Law to turn it into a 3CNF clause. We will
show the procedure for x1 ∧ x2 =⇒ z2. This implication tells us that
if the LHS is 1, the RHS must be 1, but if the LHS is 0 then the RHS
can be anything. The following formula is equivalent to this constraint

((x1 ∧ x2) ∨ z2)

since, if x1 ∧ x2 = 1, z2 is forced to be equal to 1 for the formula to
evaluate to 1. Now, if we apply DeMorgan’s Law, we get:

(x1 ∨ x2 ∨ z2)



10

which is exactly a 3CNF clause. We then convert the three other impli-
cations using the same procedure, then AND them, and get four CNF
clauses that capture the consistency of z2 with x1 ∨ x2.

We will now present another way of seeing how to generate the four
CNF clauses that might seem less magical. This involves looking at all
eight possible boolean assignments for a node and its two children; we
use one CNF clause to rule out each of the four incorrect assignments.
To make this more clear, we will use the same example as above: z2 =

x1 ∨ x2. We present the possible boolean assignments below and color
in red those that aren’t consistent with z2 = x1 ∨ x2.

x1 x2 z2

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Now, for each of the red rows in the table, we will construct the
clause which disallows them. The first row is the assignment of x1 =

0, x2 = 0, z2 = 0, and (x1 ∨ x2 ∨ z2) disallows exactly that by saying at
least one of the literals’ values must be flipped. Similarly, the clause
we create to disallow the fourth row will be (x1 ∨ x2 ∨ z2). So for each
operation node in the tree, we will get 4 CNF clauses with 3 literals
each. We do this for all the nodes in the binary tree, and end up with
a 3CNF formula.

If the total number of operations in our original boolean formula
was k, then the total number of clauses we created is 4k + 1, so this
reduction runs in polynomial time.

All that remains is to argue that ϕ ∈ SAT ⇐⇒ ϕ′ ∈ 3SAT.
(→) If there is a satisfying assignment to ϕ, we evaluate our binary

tree and set the zi variables according to the result of the intermediate
nodes. Since ϕ′ checks for a consistent evaluation of ϕ’s binary tree
such that z1 = 1, and we already know we have a satisfying assign-
ment for ϕ, this process gives us a satisfying assignment to ϕ′.

(←) If there is a satisfying assignment for ϕ′, this means there is a
consistent evaluation of the binary tree representation of ϕ which re-
sults in z1 = 1. Moreover, the satisfying assignment for ϕ′ already has
assigned values to x1, · · · , xn that result in such an evaluation. As a re-
sult, we can just copy these values to obtain the satisfying assignment
to ϕ.


	Recitation 8: NP-Completeness
	Definition and Intuition
	SUBSET-SUM is NP-Complete
	VERTEX COVER is NP-Complete
	SAT p 3SAT


