Recitation 08: Dynamic Programming, PSPACE

Dynamic programming

Dynamic programming is a tool to show that languages are in P.
Sometimes, the brute-force algorithm for a problem is non-polynomial,
but using dynamic programming, we can solve it in polynomial time.
Dynamic programming is applicable when the problem has the fol-
lowing two properties:

® Recursive: The answer for a problem can be computed from an-
swers of smaller subproblems that can be solved in the same way.

* Memory: The total number of different subproblems is polynomial.

The first property guarantees that dynamic programming works,
and the second property guarantees that the runtime is polynomial.
Dynamic programming is essentially a recursion algorithm that memo-
izes (remembers) the answers of solved subproblems, so each subprob-
lem is solved only once. The recursive approach is referred to as the
top-down approach.

An often cleaner way to design dynamic programming solutions is
the bottom-up approach. In this approach, subproblems are sorted in
order of size, and each is computed one-by-one. Each time a subprob-
lem is encountered, the answer can be directly computed, since the
answers to the smaller subproblems have already been computed and
stored.

When presenting a dynamic programming solution it is important
to specify:

¢ The definition of the sub-problem you are solving.

e The base case - what is the smallest subproblem that you can solve
without relying on other subproblems to start?

* How to get the solution for a larger subproblem from the solution
to the smaller subproblems.

¢ The subproblem that gives you the answer to the original problem.

A simple application of dynamic pro-
gramming is in computing the n-
th term of the Fibonacci sequence
(0,1,1,2,3,5,..). The n-th term f(n) is
equalto f(n—1)+ f(n—2), with f(0) =
0,f(1) = 1. How many steps would be
required if the algorithm were purely re-
cursive? How about if we use dynamic
programming?

The top-down approach has the advan-
tage that it doesn’t compute the answers
to subproblems that are not used, but its
runtime is often harder to reason about.
The bottom-up approach may do redun-
dant work since it solves all subprob-
lems.



The following example illustrates a dynamic programming solution
with these components.

We define UNARY — SSUM to be the language SUBSET — SUM
with the inputs given in unary, i.e.

UNARY — SSUM = {(S, t)| There exists some subset of S
that sums to t where all inputs S and t are given in unary.}

Theorem 1. UNARY — SSUM € P.

This theorem might come as a surprise, since we showed last recita-
tion that SUBSET — SUM without unary encoding is NP-Complete.
It’s a helpful exercise to revisit the proof from last recitation and fig-
ure out exactly what goes wrong with the unary encoding. In this case,
the size of t as constructed by the reduction from last recitation will
be O(n + k) where there are n variables and k clauses. However, when
we convert the input to be in unary, the size of ¢ is equal to its value,
which is exponential in terms of the input size, i.e. the size of t will
be O(10"*F) if we treat the numbers as being in base 10. Therefore,
the reduction can no longer run in polynomial time, so it fails to show
that UNARY — SSUM is NP-Complete.

Proof idea. We want to construct a dynamic programming algorithm
that will decide UNARY — SSUM in polynomial time.

Let S = {xq,x2,...,x,}. Note that the brute-force approach here of
trying all possible subsets will take non-polynomial time as there are
O(2") possible subsets of S to check.

Instead, we can split the problem into smaller subproblems by ob-
serving that for each element x; € S, we have a choice of whether or
not to include x; in our sum. If there is a subset of elements of S that
sums to ¢, then there will either be a subset of elements of S\{x;} that
sum to t — x; or sum to t, where we include x; in our sum in the for-
mer case and do not include it in the latter one. This establishes the
recursive nature of the problem, since we reduce the problem into one
with a smaller set and/or smaller target sum.

We can remember possible sums that we can create with elements
in the subset {x1,...x; 1} for each i 1 < i < n and use these values to
compute the possible sums involving x;. Therefore, we can define our
subproblem to be if there is a subset of elements {x1,...,x;} that sum
to j for some 0 < j < t. There will be a total of O(nt) subproblems,
which is polynomial in terms of the input size since f is expressed in
unary.

Our final answer will be the subproblem corresponding to the sub-
set {x1,...,x,} with target sum t. We start by building our table with
small i and j and build from there using the recursive property we
found.



Proof. We will use the bottom-up approach of dynamic programming.
Build TM M deciding UNARY — SSUM as follows:

M: on input (S, t)

1. Define the subproblem (S;,j) to be the question of whether
there is a subset of S; that sums to j where S; = {x1,...,x;} for
all1<i<nand 0 <j <t

2. Base Case. For all subproblems (S;,0), set the value equal to
true (T), since we can always produce a sum of 0 from a subset
of any length by taking the empty subset.

3. For each sub-problem (S;, j), set its value equal to T if at least
one of (S;_1,j and if (S;_1,j — x;) is true (where we only con-
sider the second subproblem if j — x; > 0). Otherwise, set it
equal to false.

4. After solving all the subproblems, if (S, t) is true, accept. Oth-
erwise, reject.

Time Complexity Analysis

We see that M runs in polynomial time because it builds a table of size
O(nt) to compute all the subproblems. Since ¢t is expressed in unary,
O(nt) € P, so we only have a polynomial number of subproblems.
For each subproblem, we only do polynomial work to look up two
previous values and decide the current subproblem’s answer based on
those. Therefore, M will decide UNARY — SSUM in polynomial time,
so UNARY — SSUM € P. O

Consider a simple example, where S = {1,3,4,8,11,14} and t =
5. We know the subset {1,4} will sum to 5, so we should accept.
The visual depiction below shows a snapshot of M’s memory while
following the dynamic programming solution detailed above.



5 F F Answer

4| F T

e~

g

£3| F T

wn

-

]

%’3 2| F F

=

1| T T

o] T T T T T T
1 2 3 4 5 6

Start index i
Space Complexity

So far in this class, we’ve focused on constructing Turing machines
that run within a specific time bound. The dynamic programming
approach we just saw is one technique where we traded space for
time. Now we're adjusting our perspective and instead considering
space bounds!

Define SPACE(s(n)) to be the set of languages decided by an O(s(n))
space deterministic Turing machine. Likewise, define NSPACE(s(n)) to
be the set of languages decided by an O(s(n)) space nondeterministic
Turing machine.

Definition 2.

PSPACE = | JSPACE(n")
k

NPSPACE = | JNSPACE(n*)
k

We will look at a couple of examples of languages that are in PSPACE
whose time complexity does not necessarily fit neatly into P or NP.

MIN-FORMULA

We say that two Booolean formulas are equivalent if they have the same
set of variables and evaluate to the same boolean for all possible sets
of assignments to those variables. A Boolean formula is minimal if
no shorter Boolean formula (i.e. a formula with fewer symbols) is
equivalent to it. Using these defintions, we can define the language
MIN — FORMULA to be a collection of minimal boolean formulas.



Definition 3 (MIN-FORMULA).
MIN — FORMULA = {(¢)|¢ is a minimal boolean formula}.

For example, x1 V x, is a minimal boolean formula since it cannot
be simplified any further. However, x; V (x; A x2) is not a minimal
boolean formula since it can be simplified to x;.

Next, we will show that MIN — FORMULA is in PSPACE.

Theorem 4. MIN — FORMULA € PSPACE.

Proof idea. The main idea is to iteratively try every single smaller for-
mula and see if it is equivalent to ¢. We test equivalence by looping
through every single variable assighment and testing if the outputs
are the same. If every single assignment produces the same result as
¢, then we know that the smaller boolean formula is equivalent to ¢,
so ¢ is not minimal. If any one of these smaller formulas is equivalent
to ¢, then we know ¢ is not minimal.

Proof. We construct a TM M that decides MIN-FORMULA and uses
polynomial space.

M: On input (¢):
For every smaller formula ¢':

1. For every possible assignment S of variables in ¢:
i. Plug in S into ¢ and simplify until you get bool b (b will
either be True or False).
ii. Plugin S into ¢’ and simplify until you get bool b’ (b will
either be True or False).

iii. If b = b’ for every possible assignment S, then reject.

Space Complexity Analysis

On each iteration of the inner loop of trying each assignment, we sim-
ply make an assignment to each variable and plug into the formula.
This substitution only takes polynomial space. After each iteration,
we clear the tape so it can be reused. Therefore, we only ever use
polynomial space, so MIN — FORMULA € PSPACE. O

Let’s see how MIN — FORMULA relates to the P and NP time
complexity class.

Theorem 5. If P = NP, then MIN-FORMULA € P.

Proof. Note that if P = NP, then coP = coNP, but coP = P (P is closed
under complement), so the statement implies P = NP = coNP.
We define a language

EQUIV — FORMULA = {(¢,¢')|¢ and ¢’ are equivalent formulas}.



We see that EQUIV — FORMULA is in NP, as we can take certificate
to be a variable assignment in which the two formulas do not match,
and this can be verified by plugging in the variables to each formula
and comparing the resulting booleans to confirm they differ, which
runs in polynomial time.

Hence, EQUIV — FORMULA € coNP, so by our assumption that
P = NP, EQUIV — FORMULA € P. Let its polynomial time decider
be TM M.

Then, we can define NTM N that decides MIN — FORMULA, i.e.
the language of non-minimal boolean formulas, in polynomial time to

be the following;:

N: On input (¢):

1. Nondeterministically guess a smaller formula ¢'.

2. Run polynomial time decider for EQUIV — FORMULA M on
input (¢, ¢’). If M accepts, then accept.

N will essentially “guess” a smaller formula and accept if it is equiv-
alent to ¢. If any one of the branches of the non-determinism accepts,
then we will have found a smaller equivalent formula to ¢, so it is not
minimal, meaning (¢) € MIN — FORMULA.

Therefore, we have shown that MIN — FORMULA € coNP. Since
we have assumed P = NP and shown this implies P = NP = coNP,
this gives us that MIN — FORMULA € P, as desired.

O

Note, while we are able to show that MIN — FORMULA € P if
P = NP, it is actually not known if MIN — FORMULA € NP or
MIN — FORMULA € coNP

TQBF
A fully quantified boolean formula is a Boolean formula that bounds each

variable with a quantifier (i.e. 3,V). For example,

Vx3y[(x Vy)]

is a true quantified boolean formula, since for every value chosen
for x, there exists the assignment for y such that the formula will be
satisfied (namely y = 1).

Definition 6. We define TQBF to be the langauge of true quantified
boolean formulas, i.e.

TQBF = {(¢)|¢ is a true fully quantified boolean formula}.

Why does our proof of Theorem 5 not
imply that MIN — FORMULA € coNP?

What happens if
Vx3y[(x Ay)] instead?

the formula

is



Theorem 7. TQBF € PSPACE.

Proof. We can construct a recursive algorithm that runs in PSPACE that
decides TQBF by trying all assignments. We construct TM M deciding
TQBF that does the following;:

M: On input (¢)

1. Base case: If there is only one variable x;, plug in both 0 and
1 and determine if the quantified boolean formula can be sat-
isfied. Accept if it can be, and otherwise reject.

2. Otherwise, take the first variable x;. Plugin x; = 0and x; =1
and simplify to get ¢g and ¢ respectively.

3. Run M on (¢p) and (¢7) and let the results be booleans by and
by respectively.

4. If the quantifier for x; is V, return by A b, as we want the
formula to be satisfied regardless of the value of xy. If it is 3,
return by V by, since only one of the two formulas is required
to be true in the exists condition.

Space Complexity Analysis

We see that M uses polynomial space since for each recursive call, it
only needs to plug in values for one variable, which can be done in
polynomial space in terms of the input size. Then, after each recursive
call, we clear the extra tape used to plug in the variable value so that
it may be reused. Therefore, overall M decides TOBF in PSPACE, so
TQBF € PSPACE, as desired. O

Next, we look at how TQBF is related to NP and coNP.
Theorem 8. TQBF is NP-Hard.

Proof. We show that 3SAT <, TQBF. Note that asking if there is a
satisfying assignment for ¢ is equivalent to the quantified boolean for-
mula for ¢ with existence quantifiers for each variable. Therefore, we
map ¢ to a quantified boolean formula ¢’ which has the same boolean
formula as ¢ with existence quantifiers for each variable.

More formally, we define our mapping to be

f(¢p) =3xq,..., Ixu[].
We show this mapping reduction is correct by showing ¢ € 35AT <
f(¢) € TQBF.

(—) If ¢ is satisfiable, then there is some assignment of x1,...,xy,

that makes ¢ true. Therefore, the quantified boolean formula Jx1, ..., 3x,[¢]

is true, so f(¢) € TQBF.

A language B is NP-Hard if A <, B
for every language in A € NP. This
is different from the notion of NP-
completeness, because it does not im-
ply that B € NP. It is unknown if
TQBF € NP. We will see later that if
TQBF € NP, this would actually imply
that PSPACE = NP.



(«—) If 3xq, ..., Jxu[¢], there is some assigment of variables x1, ..., x,
that makes ¢ true, so it has a satisfying assignment. Therefore, ¢ €
3SAT.

Thus, the mapping reduction is correct. Furthermore, the reduction
can be computed in polynomial time, since it just requires a linear scan
of the formula and determining all the variables to add a there exists
quantifier before them. O

Theorem 9. TQBF is coNP-Hard.

Proof. We show that 3SAT <, TQBF. This is sufficient to show that
TQBF is coNP-Hard since 35AT € NP implies 3SAT € coNP. Further-
more, since 3SAT is NP-complete, A <, 35AT = A <, 3SAT for all
A € NP, which implies 3SAT coNP-complete.

A formula does not have a satisfying assignment if and only if for

all possible values of the variables the formula ¢ evaluates to false.
This is equivalent to saying for all possible variable assignments, ¢ is
true. Therefore, we can map ¢, an instance of 3SAT, to ¢ with for all
quantifiers for every the variables.

More formally, we define our mapping to be

() =Vx1,..., Vau[@).

We show this mapping reduction is correct.

(—) If ¢ is unsatisfiable, then for all xy,...,x,, ¢ is false, so ¢ is
true for any assignment. Therefore, the quantified boolean formula
Vx1,...,Vxu[¢p] will be true, so f(¢) € TQBF.

(«) If Vxi,...,Vxu[¢] is true, then for every possible assignment
of variables, ¢ is true. This means that every possible assignment of
variables results in ¢ being false, so there is no satisfying assignment
and ¢ € 3SAT.

Therefore, the mapping reduction is valid. Furthermore, it can be
computed by doing a linear scan of the input, as it requires scanning
the formula and taking the complement and adding a quantifier for
each variable. O

Analogously, a language B is coNP-Hard
if A <, B for every language in A €
coNP. Or equivalently, A <, B for every
language A such that A € NP. Again, B
does not necessarily have to be in coNP,
and similarly it is unknown if TQBF €
coNP (and we will see later that this
would similarly imply that PSPACE =
coNP).



	Recitation 08: Dynamic Programming, PSPACE
	Dynamic programming
	Space Complexity


