
Recitation 8: NP-Completeness

This recitation will give you more insight into NP-Completeness by
reviewing the intuition behind it as well as providing more examples
of how to prove a problem is NP-Complete. Reductions are daunting
at first and take some time to digest, but they are one of the most
important concepts you will take away from this class. The problems
you solve on the PSets will progressively give you more and more
experience with this line of reasoning, and you’ll be able to tackle
more abstract reductions as the semester progresses!

Definition and Intuition

Before giving the formal definition, we motivate the notion of NP-
Completeness. The question of P vs NP has been central to complexity
theory for a long time. Showing that P = NP would require proving
that every single language in NP has a deterministic polynomial-time
algorithm. Showing this directly would require putting in a lot of
effort for every single NP language. On the other hand, showing that
P ̸= NP would require that at least one problem in NP does not have
a deterministic polynomial-time algorithm. But how would we choose
this problem? Imagine spending years trying to prove that something
like COMPOSITES ̸∈ P, only to have someone show that you can
actually decide it in polynomial time! If you’re curious about this, you should

look up the AKS Primality check, which
allows you to deterministically check
whether or not a number is prime in
polynomial time.

NP-Completeness addresses both of these issues. We find a set of
the "hardest" problems in NP, meaning that a decider for one of these
languages would yield a decider for all languages in NP with only
an additional polynomial overhead. Then, if we show one of these
languages is in P, we immediately get that P = NP. For this reason, if
one wants to show P ̸= NP, an NP-Complete problem could be worth
studying, since P ̸= NP would imply all NP-Complete problems do
not have a deterministic poly-time algorithm!

One thing to keep in mind is that the tools for proving NP Com-
pleteness have strong parallels to what we used for proving undecid-
ability. Our first time proving a language, SAT, is NP complete took
substantial effort using a computation history method similar to that

2

in PCP. Similarly, our first time proving a language, ATM, was unde-
cidable took considerable effort using diagonalization. However, after
this is done, we use the power of reductions to leverage our initial
result in more quickly proving any other language NP-Complete or
undecidable. To prove A is NP-complete, we can show SAT ≤p A; to
prove B is undecidable, we can show ATM ≤m B.

Now, let’s move onto the formal definition of NP-Completeness.

Definition 1 (NP-Completeness). A language B is NP-Complete if it sat-
isfies the two following properties:

1. B ∈ NP Property 2 is known as NP-Hardness.

2. For each language A ∈ NP, we have A ≤p B

We have now formally defined what it would mean for a language
to be one of the "hardest" in NP. But how do we know such a language
actually exists? The Cook-Levin Theorem tells us that the boolean sat-
isfiability language, SAT, actually has these properties. You probably
remember the proof at a high level, and how tricky it was to make the
approach general enough so that it works for any language in NP. We
don’t have to redo this approach every time we want to show some
language B is NP-Complete, so we will generally exploit the following
result.

Theorem 1. Let C be a language in NP. If B is NP-Complete and B ≤p C, How do we prove this? Since B is NP −
COMPLETE, for all A ∈ NP, A ≤p B.
If B ≤p C, then for all A ∈ NP, A ≤p
B ≤p C, satisfying the definition of NP-
Completeness for C.

then C is NP-Complete.

Thus, once we know at least one language B is NP-Complete, we
may show that some other language C in NP is NP-Complete by giv-
ing a polynomial-time reduction from B to C. This means that B can
be any language we have previously shown to be NP-Complete, but
in practice we will often take 3SAT, where the boolean formulas have
a special 3CNF form: an AND of clauses, where each clause is an
OR of three literals. See figure () for a diagram of P, NP, and where
NP − COMPLETE languages fall, in the cases of both P ̸= NP and
P = NP.

Gadget Constructions

One of the reasons we often use 3SAT in reductions is that we can use
a standarized reduction technique based on constructing “gadgets”
that encode different parts of the 3SAT instance. When showing that
3SAT ≤p B we usually construct two main types of gadgets:

• Variable Gadgets: These simulate a variable by capturing whether
it is set to True or False.

3

Figure 1: On the left, we have a schema
for when P and NP may not be equal.
On the right, we have a schema for when
P = NP.

• Clause Gadgets: These simulate a clause by capturing whether the
clause is satisfied.

A useful strategy when constructing a mapping reduction f to show
A ≤p B for proving NP-completeness is considering how to relate the
two instances’ certificates. You need to show w ∈ A ⇐⇒ f (w) ∈ B.
Typically, you show this by taking a certificate for w ∈ A and con-
structing a certificate for f (w) ∈ B. Then you show the reverse: take
a certificate for f (w) ∈ B and construct a certificate for w ∈ A. Often,
the latter part involves analyzing the structure of possible certificates.
Two requirements we will repeatedly see are:

1. The reduction must enforce that each variable is assigned to true or
false, but not both.

2. The reduction must enforce that each clause has at least one true
literal.

Now it’s time to see these gadget constructions in practice.

SUBSET-SUM is NP-Complete

The SUBSET − SUM language includes pairs of number sets and tar-
gets such that a subset of the numbers sums to the target.

Definition 2 (SUBSET-SUM). Formally, we define the language:

SUBSET − SUM = {⟨S, t⟩ |S = {x1, . . . , xk} and for some

{y1, . . . , yl} ⊆ S, we have ∑ yi = t}

For example, ⟨{5, 2, 3, 9}, 11⟩ ∈ SUBSET − SUM because 9 + 2 =

11. This problem is “hard" because the subset that works may be of
any size.

Theorem 2. SUBSET − SUM is NP-Complete.

4

Proof. In order to show that SUBSET − SUM is NP-complete, we need
to show the following:

1. SUBSET − SUM ∈ NP:
We can prove this by providing a certificate that can be checked
in polynomial time. The subset c ⊆ S is the certificate, and we
can have a verifier check whether or not all of the elements in c
sum to t in polynomial time, so SUBSET − SUM ∈ NP. We could
alternatively prove SUBSET − SUM ∈ NP by providing a NTM
which nondeterministically guesses a subset c, then tests if it sums
to t and accepts if so.

2. SUBSET − SUM is NP-hard:

We reduce from 3SAT; in other words, we show that 3SAT ≤p

SUBSET − SUM. Let ϕ be a Boolean formula with n variables
x1, . . . , xn and m clauses c1, . . . , cm. We would like to construct a
corresponding SUBSET − SUM instance ⟨S, t⟩ such that

ϕ ∈ 3SAT ⇐⇒ ⟨S, t⟩ ∈ SUBSET − SUM.

Construction
We construct the reduction from ϕ to a SUBSET − SUM instance
⟨{y1, z1, . . . , yn, zn, g1, h1, . . . , gm, hm}, t⟩ shown in the table below.
Each row is one of the numbers in S, written in base 10. We hope to
find a subset that sums to t, shown on the bottom.

1 2 3 4 · · · n c1 c2 · · · cm

y1 1 0 0 0 · · · 0 1 0 · · · 0

z1 1 0 0 0 · · · 0 0 0 · · · 0

y2 1 0 0 · · · 0 0 1 · · · 0

z2 1 0 0 · · · 0 1 0 · · · 0

...
. . .

...
...

...
...

yn · · · 1 0 0 · · · 1

zn · · · 1 0 0 · · · 1

g1 1 0 · · · 0

h1 1 0 · · · 0

g2 1 · · · 0

h2 1 · · · 0

...
. . .

...
gm 1

hm 1

t 1 1 1 1 1 1 3 3 3 3

In this construction we have variable gadgets and clause gadgets:

5

• Variable gadgets: For each variable xi in ϕ, we have two numbers
yi, zi ∈ S, corresponding to a true or false assignment of xi, re-
spectively. Both have a 1 in the ith column, enforcing that we can
only select either yi (representing a true assignment) or zi (repre-
senting a false assignment) for our subset, but not both. For each
yi and zi, we also have a 1 in each clause column cj where xi or
xi, respectively, occurs.

• Clause gadgets: For each clause ci, we create numbers gi, hi ∈ S,
where both gi and hi have a 1 in column ci. These act as fillers.

We choose a subset of the numbers such that each column sums to
the corresponding entry in t. Since each clause can have at most
three literals, each column can have at most five 1’s, and summing
columns will never result in a “carry."

Correctness
Let’s prove the correctness of this construction:

• ϕ ∈ 3SAT =⇒ ⟨S, t⟩ ∈ SUBSET − SUM.
Given the certificate of a satisfiable assignment to ϕ, we must
find a subset of S summing to t. For each xi, if xi is true add
yi to the subset. Otherwise, add zi to the subset. Since we only
select either yi or zi for each variable, the first n columns in our
construction will each sum to 1, as desired. Additionally, since
ϕ is satisfied, each clause must have at least one true literal, and
therefore at least one 1 in the top right quadrant. For each clause,
select one or both of gi and hi such that each clause column will
sum to 3 in t, as desired.

• ⟨S, t⟩ ∈ SUBSET − SUM =⇒ ϕ ∈ 3SAT.
Given the certificate of a valid subset, we must find a satisfying
assignment to ϕ. Only one of yi or zi can be in our subset. If we
have yi, let xi be true. Otherwise, let xi be false. By nature of our
subset construction, each clause column must have at least one
1, and thus each clause must have at least one true literal. Thus,
our assignment is valid and satisfies ϕ.

Runtime
Finally, let’s ensure we can construct ⟨S, t⟩ in polynomial time. Cal-
culating each element of the table takes polynomial time and the
size of our table is O((2n + 2m)2), which is polynomial in the size
of ϕ, as desired.

6

UHAMPATH is NP-Complete

Recall the Hamiltonian Path problem, where given a directed graph
G = (V, E) and two nodes s, t we want to determine if there is a path
from s to t that goes through each node in V exactly once. We will
show that the undirected variant of this problem is also NP-Complete.

Definition 3 (UHAMPATH). We define the language:

UHAMPATH = {⟨G, s, t⟩| G is an undirected graph with a Hamiltonian
path between s and t}

Theorem 3. UHAMPATH is NP-complete.

Proof. As usual, in order to prove UHAMPATH is NP-complete, we
must show the following:

1. UHAMPATH ∈ NP:
We can prove this by providing a certificate that can be checked in
polynomial time. The certificate is just a list of n nodes, where n is
the number of nodes in G. A verifier would only have to check that
there are no repetitions and that there is an edge between adjacent
pairs in the list. These can both be done in polynomial time.

2. UHAMPATH is NP-hard:
We reduce from HAMPATH; in other words, we show that HAMPATH ≤p

UHAMPATH. Let ⟨G, s, t⟩ be a HAMPATH instance. We would
like to construct a corresponding UHAMPATH instance ⟨G′, s′, t′⟩
such that

⟨G, s, t⟩ ∈ HAMPATH ⇐⇒ ⟨G′, s′, t′⟩ ∈ UHAMPATH.

Construction
We write G = (V, E) and G′ = (V′, E′). We construct V′ and E′

as follows. For each node v ∈ V that is not s or t, we will create
three nodes vin, vmid, vout in V′, along with two undirected edges
(vin, vmid) and (vmid, vout) in E′. For s and t we just create sout and
tin, since the path must start at s and end at t so we will not have
edges going into s or coming out of t in it. Next, for each directed
edge u, v in E, we create an edge (uout, vin) in E′. Finally, we let
s′ = sout and t′ = tin.

Correctness
Let’s prove the correctness of this construction:

• ⟨G, s, t⟩ ∈ HAMPATH =⇒ ⟨G′, s′, t′⟩ ∈ UHAMPATH.
If there is a Hamiltonian Path in G, we can obtain one in G′ by
simply following the edges, but for each intermediate node we
will have vin, vmid, vout in the path.

7

• ⟨G′, s′, t′⟩ ∈ UHAMPATH =⇒ ⟨G, s, t⟩ ∈ HAMPATH.
It is sufficient to argue that any Hamiltonian path in G′ always
traverses each in-mid-out triple in that exact order. Assume there
is a path that, for some v, visits vin, then some other nodes, and
then returns to vmid and vout. Note that the path would be stuck
at vmid, since it only has two edges: one to vin and vout. Since
we assumed vin had already been visited, and vmid was reached
from vout, then there is no way to continue a Hamiltonian path
from vmid in this case.

This allows us to conclude that the path will consist of a sequence
of triples of in-mid-out nodes. Then, since we copied the edges
from E to E′ by connecting out-nodes to in-nodes, this means that
the direction of the traversal respects that of the directed edges,
so we can simply copy the sequence of triples into a sequence of
nodes in G and we obtain a Hamiltonian Path.

Runtime
Finally, we show that we can construct ⟨G′, s′, t′⟩ in polynomial time.
To see this, note that graph G′ has less than 3|V| nodes and 3|E|
edges so its size is polynomial in the size of G.

Note how we used a pretty different re-
duction approach to the usual gadget-
based construction from 3SAT. There is
still a sense of gadgets here: node gad-
gets and edge gadgets. As an exer-
cise, try to identify what parts of the
construction could be considered node
gadgets and which could be considered
edge gadgets.

	Recitation 8: NP-Completeness
	Definition and Intuition
	SUBSET-SUM is NP-Complete
	UHAMPATH is NP-Complete

