
Recitation 08: P, NP, Dynamic Programming

This recitation covers some basic definitions and tools of complexity
theory.

In the first half of the semester, we learned about computability
theory, where we placed languages in classes (regular, context-free,
decidable, T-recognizable) based on whether they could be solved us-
ing certain models of computation. We now move on to complexity
theory, where we restrict our attention to decidable languages and first
focus on determining how much time is required to decide them.

Time complexity for deterministic models

To determine the time complexity of a language, we first define what
it means for a Turing machine to run in t(n) time, where t : N → N.

Definition 1. A single-tape deterministic TM M runs in time t(n) if M
halts in at most t(n) steps on all inputs of length n.

Definition 2. TIME(t(n)) = {B | some single-tape deterministic TM
M runs in O(t(n)) time and L(M) = B}. A TM runs in O(t(n)) time if it runs in

≤ ct(n) time for some constant c > 0
independent of n.We can now define our first time complexity class.

Definition 3. P =
⋃

k∈N TIME(nk).

In words, P is the set of languages that can be decided in cnk time
for constants c, k. These are the languages that can be decided in poly-
nomial time. To show that a language is in P, we typically must con-
struct a TM that decides that language, then argue that the TM halts
in polynomial time.

Model independence

While Definitions 1 and 2 require a single-tape deterministic TM, Def-
inition 3 is model independent. This means that for all reasonable deter-
ministic models of computation, P defines the same class of languages.
This is useful because we are not restricted to any specific determinis-
tic model when proving languages are in P.

2

Time complexity for nondeterministic models

We define the analogous terms for nondeterministic TMs.

Definition 4. A nondeterministic TM N runs in time t(n) if all of the
threads of N halt in at most t(n) steps on all inputs of length n. Note the difference between acceptance

and runtime: for an NTM to accept an
input, it is enough for one thread to ac-
cept. For an NTM to run in time t(n), all
threads need to halt in that time.

Definition 5. NTIME(t(n)) = {B | some NTM N runs in O(t(n)) time
and L(N) = B}.

Intuitively, this means that the tree consisting of all the branches of
N’s computation can have height at most t(n), as shown below. Note
however that these definitions do not limit the width of the tree, and
there could be a non-polynomial number of branches, as long as each
branch has polynomial length.

Start

Halt
...

Halt Halt

Halt Halt Halt Halt Halt

t(n)

Definition 6. NP =
⋃

k∈N NTIME(nk).

In words, NP is the set of languages decided by some NTM in poly-
nomial time. This definition is again model independent for all rea-
sonable nondeterministic models of computation.

Certificates for NP

Intuitively, NP consists of languages L for which we can verify mem-
bership quickly. For an input x ∈ L, there is some short “certificate” c
such that if given c, it is easy to confirm that x is in L. Here are some Here, “short,” “quickly,” and “easy” all

mean polynomial in |x|.examples of certificates for instances of languages in NP:

• If a graph G ∈ HAMPATH, the certificate would be the sequence
of nodes corresponding to the Hamiltonian path in G. It is certainly
polynomial time to check that each node in the sequence is in G,
all nodes in G appear in the sequence exactly once, and all pairs of
adjacent nodes in the sequence are connected by an edge in G.

3

• For the SUBSET-SUM language, defined as {⟨S, t⟩ | S = {x1, ..., xk}
and ∃{y1, ..., yl} ⊆ S such that ∑l

i=1 yi = t}, the certificate would be
c = {y1, ..., yl}. Given c, it is easy to check that c ⊆ S and that the
sum of the elements of c is t.

This concept can be formalized with the following theorem.

Theorem 7. L ∈ NP ⇐⇒ there exists verifier TM V such that L(V) ∈ P
and (x ∈ L ⇐⇒ there exists c such that |c| = O(poly(|x|)) and ⟨x, c⟩ ∈
V).

Proof. Informally, we want to show that L ∈ NP ⇐⇒ strings in L have
short and quickly checkable certificates, and strings not in L don’t.

(=⇒) Let L ∈ NP. Then, there exists NTM N that decides L in poly-
nomial time. We will show that strings in L have short and quickly
checkable certificates. Construct TM V which takes in ⟨x, c⟩ and ac-
cepts iff c is an accepting computation history of N on x. From our Intuitively, think of the computation his-

tory as all the nondeterministic choices
that N made on an input. These choices
specify a thread, and V just needs to
check whether this thread leads to an ac-
cept state.

previous algorithms for checking that computation histories are valid
and accepting, we know that V runs in polynomial time. Then, for all
x ∈ L, let c be the computation history of N on x. We know that c is
short since N runs in polynomial time.

(⇐=) Let language L have short and quickly checkable certificates
for strings in L. We will show that L ∈ NP. Let V be the verifier for L
that runs in time nk for inputs of length n, for some constant k. For an
input x of length n, since V accepts ⟨x, c⟩ for some certificate c in time
nk, we know that |c| won’t exceed nk. We can thus build NTM N: on
input x, nondeterministically guess certificate c of length at most nk.
Run V on ⟨x, c⟩ and accept if and only if V accepts. N will accept x A small detail on guessing: since a TM

a fixed number of states, we can’t guess
the entire c all at once (since the number
of possibilities may depend on n). In-
stead we can guess c bit-by-bit.

if and only if there exists a c such that V accepts ⟨x, c⟩, so L(N) = L.
All threads will halt in polynomial time since |c| is polynomial, and V
runs in polynomial time.

Given Theorem 7, it is now easy to show that a language L ∈ NP.
To construct an NTM running in polynomial time that decides L, we
can

1. Think of a (short, easy to check) certificate for strings in L.

2. Build the following NTM. On input x:

(a) Guess the certificate c.

(b) Check whether or not c is a valid certificate for x. Accept if so.
Else, reject.

Dynamic programming

Dynamic programming is a tool to show that languages are in P.
Sometimes, the brute-force algorithm for a problem is non-polynomial,

4

but using dynamic programming, we can solve it in polynomial time.
Dynamic programming is applicable when the problem has the fol-
lowing two properties:

• Recursive: The answer for a problem can be computed from an-
swers of smaller subproblems that can be solved in the same way.

• Memory: The total number of different subproblems is polynomial.
A simple application of dynamic pro-
gramming is in computing the n-
th term of the Fibonacci sequence
(0, 1, 1, 2, 3, 5, ...). The n-th term f (n) is
equal to f (n− 1)+ f (n− 2), with f (0) =
0, f (1) = 1. How many steps would be
required if the algorithm were purely re-
cursive? How about if we use dynamic
programming?

The first property guarantees that dynamic programming works,
and the second property guarantees that the runtime is polynomial.
Dynamic programming is essentially a recursive algorithm that memo-
izes (remembers) the answers of solved subproblems, so each subprob-
lem is solved only once. The recursive approach is referred to as the
top-down approach.

An often cleaner way to design dynamic programming solutions is
the bottom-up approach. In this approach, subproblems are sorted in
order of size, and each is computed one-by-one. Each time a subprob-
lem is encountered, the answer can be directly computed, since the
answers to the smaller subproblems have already been computed and
stored. The top-down approach has the advan-

tage that it doesn’t compute the answers
to subproblems that are not used, but its
runtime is often harder to reason about.
The bottom-up approach may do redun-
dant work since it solves all subprob-
lems.

The following example illustrates the bottom-up approach.

Proposition 8. The class P is closed under ∗. More precisely, A ∈ P =⇒
A∗ ∈ P.

Recall that A∗ = {w |w = x1x2 · · · xk, xi ∈ A, k ≥ 0}. The brute-
force solution would be to try all possible splits of w into x1x2 · · · xk,
for all k = 1, ...n. However, this is not solvable in polynomial time,
since there are exponentially many possible ways to split w. Instead,
we use dynamic programming.

Proof idea. Let A be recognized by TM M in polynomial time. We want
to construct TM N recognizing A∗ in polynomial time.

On an input w of length n, checking whether w ∈ A∗ can be done
recursively. More precisely, w ∈ A∗ if and only if at least one of the
following two conditions holds:

• w ∈ A or w = ϵ

• There exists i, 1 ≤ i < n, such that w[1...i] ∈ A∗ and w[i+1...n] ∈ A∗ Let w = w1w2 · · ·wn. Here, we are using
w[l...r] to denote substring wlwl+1 · · ·wr .

With the properties above, we can determine whether w ∈ A∗ from
the answers to the subproblems for w[1...i] and w[i+1...n]. Thus, the
problem has the recursive property.

For the memory property, we want to bound the total number of dif-
ferent subproblems. Each subproblem will correspond to a substring

5

w[l...r]. There are O(n2) ways to choose l and r, so there are polynomi-
ally many subproblems. To solve each subproblem, we try all possible
values of i, for 1 ≤ i < n, so we use 2(n − 1) = O(n) subproblems to
compute the answer. This shows that the total runtime (O(n2) · O(n))
is polynomial.

Proof. We will use the bottom-up approach of dynamic programming.
Build TM N recognizing A∗ as follows:

• On input w, accept if x = ϵ. Otherwise, consider the subproblems
“is w[l...r] ∈ A∗?” for all 1 ≤ l ≤ r < n. Sort the O(n2) subproblems
by length (i.e., r − l + 1).

• To solve the problem for wl···r, we first check if w[l...r] ∈ A and
answer Y if so. Otherwise, we answer Y to wl···r if w[l...i] ∈ A∗ and
w[i+1...r] ∈ A∗ for any i, where i = l, l + 1, ..., r − 1. If not, answer N.

• If the answer for w1...n (the largest and final subproblem) is Y, accept.
Otherwise, reject.

See the proof idea above for the analysis of why N runs in polyno-
mial time. We thus have A∗ ∈ P.

Consider a simple example, where A = {a, ab}, and w = abaaba.
We have that w ∈ A∗ using the following split: ab|a|ab|a. The visual
depiction below shows a snapshot of N’s memory while following the
dynamic programming solution detailed above.

Answer

Y

N

Y

Y

N

Y

Y

N

Y

Start index l

En
d

in
de

x
r

1 2 3 4 5 6

1

2

3

4

5

6

	Recitation 08: P, NP, Dynamic Programming
	Time complexity for deterministic models
	Time complexity for nondeterministic models
	Dynamic programming

