
Recitation 06: Recursion Theorem + Midterm Review

Recursion Theorem

The recursion theorem is informally stated as follows.

Theorem 1 (Recursion theorem, informal). A Turing machine can obtain
a description of itself and compute on it. In other words, when writing pseu-
docode for a TM R, we’re allowed to write “Get self-description ⟨R⟩” as the
first step and use ⟨R⟩ in subsequent steps.

The recursion theorem, and more broadly the idea of self-reference
(e.g., diagonalization), is a powerful tool for proving certain things are
impossible. Here’s an analogy for what a proof with the recursion
theorem generally looks like:

Suppose there’s this prophet that can make certain kinds of predictions about
people. I’ll ask the prophet to make such a prediction about myself, and then I’ll
“disobey” the prediction by behaving differently from what the prophet predicted
about me. This is a contradiction, and hence the prophet cannot exist.

Now, change “prophet that makes certain kinds of predictions about
people” to something like “TM D that decides whether a given TM has
a certain property”1 and the pronoun “I” to a TM R that invokes the 1 The prophet can also be other kinds of

things that in a sense “tell you some-
thing about TMs”—see Example 2 be-
low.

recursion theorem. And we have a template for proofs that use the
recursion theorem:2

2 Such a proof doesn’t work for
all TM properties. Indeed, some
TM properties are decidable, such as
the one from Recitation 3: {⟨M, w⟩ |
M ever attempts to move its head left on input w}.
What goes wrong when you try to use
the recursion theorem to show that this
language is undecidable?

Suppose there’s a decider D for some TM property. Construct a TM

R = “On input x,

1. Get self-description ⟨R⟩.

2. Ask D whether R has the property in question by running D on ⟨R⟩.

3. Behave opposite to what D said about R:

• If D says R has the property, then don’t exhibit that property.

• If D says R doesn’t have the property, then exhibit that property.”

This is a contradiction: R contradicts what D says about R. Thus, the TM
property in question is undecidable.

2

As a simple example, let’s show that ATM is undecidable using the
recursion theorem. Note the similarity with the diagonalization proof
from lecture, which also uses self-reference to construct a TM that
contradicts what an ATM decider says about it.

Example 1. Show that ATM is undecidable using the recursion theorem.

Proof. Suppose for the sake of contradiction that D decides ATM. Then
construct TM

R = “On input w,

1. Get self-description ⟨R⟩.

2. Run D on ⟨R, w⟩.

3. Behave opposite to what D said about R on w:

• If D accepted (i.e., predicted that R would accept w), then reject.

• If D rejected (i.e., predicted that R would reject w), then accept.”

Then R accepts w iff D rejects ⟨R, w⟩, so D cannot be a decider for
ATM, a contradiction.

While the example above identifies “prophet” with “a decider D
for ATM”, the “prophet” doesn’t always have to be a decider for a
TM property. It can more generally be things that “tell you some-
thing about TMs” in an informal sense. For example, in the MINTM

T-unrecognizability proof from lecture, the “prophet” is an enumera-
tor for a TM property (namely, minimality), and the enumerator tells
you something about the TMs that it enumerates (i.e., that they have
that property and no other TM does). In the following example, the
“prophet” is a function f from TMs to TMs, and f tells you something
about the relationship between ⟨M⟩ and f (⟨M⟩).

Example 2. Show that ALLTM ̸≤m ALLTM using the recursion theorem.

Proof. Suppose for the sake of contradiction that a mapping f imple-
menting the reduction exists. Then construct the TM

R = “On input x,

1. Get self-description ⟨R⟩.

2. Get ⟨R′⟩ = f (⟨R⟩).

3. Simulate R′ on x.”

Then f says that L(R) ̸= L(R′), but R disobeys that prediction by
behaving the same way as R′ (Step 3), resulting in L(R) = L(R′),
a contradiction. Hence, a mapping f that implements the reduction
ALLTM ̸≤m ALLTM cannot exist.

3

Midterm review

We start with a Venn diagram of language classes, which shows the
relationships between regular, context-free, Turing-recognizable, co-
Turing-recognizable,3 and decidable languages (Figure 1). The dia- 3 The co-Turing-recognizable languages are

defined to be the complements of the
Turing-recognizable languages.

gram also contains example languages in each class. Note that the in-
tersection of Turing-recognizable and co-Turing-recognizable languages
are the decidable languages.

All Languages

T-recognizable

ATM

HALTTM

ETM

co-T-recognizable

ATM

HALTTM

ETM

Decidable

ADFA

EDFA
EQDFA

ACFG ECFG

CFL

{0k1k}
Regular

Σ∗ ∅

Figure 1: Venn diagram showing the lan-
guage classes: regular, context-free, (co-
)Turing-recognizable, decidable.

A summary of these language classes is given in Table 1.

X What recognizes an X
language

What generates an X
language

Regular DFA/NFA Regular expression
CFL (non-det.) PDA CFG

T-decidable Turing decider —
T-recognizable Turing machine —

Table 1: Summary of what recog-
nizes/generates the language classes:
regular, context-free, decidable, and
Turing-recognizable.

Next is a table with the closure properties for each language class
Table 2. In recitation, we quickly reviewed the arguments for why
some of these closure properties hold, and we recommend it as a re-
view exercise that you do this yourself for all the closure properties.
This may help you find some knowledge gaps you may have with each
model of computation.

Observe that consistent with our diagram above, the complement of
T-recognizable is not necessarily T-recognizable (otherwise, T-recognizable
= co-T-recognizable, i.e., they would be represented by the same circle
in the Venn diagram). This is because T-recognizers can reject an input

4

Class ∪ ∩ ◦ ∗ L LR

Regular Y Y Y Y Y Y
CFL Y N† Y Y N Y

T-decidable Y Y Y Y Y Y
T-recognizable Y Y Y Y N Y

† CFL ∩ Regular = CFL

Table 2: Summary of closure properties
of each language class.

by running on it forever, so the argument that we can flip the output
to obtain the complement, while it works for deciders, does not work
for recognizers.

The next table summarizes the decidability of questions regarding
various models of computation Table 3. You can use these results to
show the (un)decidability of other questions about models of compu-
tation.

X AX EX ALLX EQX

DFA/NFA Y Y Y Y
CFG/PDA Y Y N N

LBA Y N N N
TM Na Nb Nc Nc

a T-recog. b co-T-recog. c neither T-recog. nor co-T-recog.

Table 3: Summary of decidability of
questions regarding various models of
computation.

We now give an overview of the techniques we have studied so
far to solve different kinds of problems, as well as tips and tricks for
each one. A summary is given in Table 4. All examples are from the
Jeopardy I created for my recitation section: https://jeopardylabs.

com/play/what-kind-of-language. It is recommended to try to solve
the yourself before looking at the solutions.

Showing a language belongs to a certain class

Let’s first review the general approach we take when showing a given
language L belongs to a certain class.

Showing regular The easiest solution is often to construct an NFA rec-
ognizing L or write a regular expression for L, although closure
properties can come in handy as well. One can also construct a
DFA, but an NFA allows you to use nondeterminism, which can
often simplify your solution.

Conversely, if a problem tells you that a language A is regular, you
can take a DFA M for this language. You can then, for example,
construct another automaton M′ out of M to prove some related

https://jeopardylabs.com/play/what-kind-of-language
https://jeopardylabs.com/play/what-kind-of-language

5

X Show is X Show is not X

Regular Construct
DFA/NFA/regex
Closure properties

Pumping lemma
Closure properties

CFL Construct
PDA/regex
Closure properties

Pumping lemma
Closure properties

Decidable Construct decider
Invoke known
results (Table 3)

General/mapping reduction
from undecidable language
Computation history method
Recursion theorem

T-recog. Construct recog-
nizer/enumerator
Invoke known
results (Table 3)

Mapping reduction from
T-unrecognizable language

Table 4: Summary of common tech-
niques for proving a language is (not) in
a certain class.

language is regular (e.g., in proving closure properties), or use a
decider that decides some property about M′ to construct a decider
that decides some property about M.

Example 3. Show that L = {w | w represents a power of 2 in binary} is
regular.

Proof. A regular expression for L is 10∗.

Showing context-free Depending on the CFL, it may be easier to con-
struct a PDA that recognizes it or to write a CFG that generates
it. When constructing a PDA that recognizes L, the PDA’s stack is
often used for counting/comparing certain amounts, and the non-
determinism can be used to make necessary guesses. When con-
structing a CFG that generates L, it may be helpful to think about
the different kinds of substructures that strings in L are composed
of, which correspond to the variables in your grammar. The rules
in your grammar dictate how these substructures combine to form
strings in L.

If a problem tells you that some language A is a CFL, then you can
take a CFG G that generates A or a PDA P that recognizes A. You
can then, for example, construct another CFG G′ out of G or PDA
P′ out of P to prove some related language is context-free (e.g., in
proving closure properties). Or, you can use a decider that decides
some property about G′ or P′ to construct a decider that decides
some property about G or P (e.g., PSET 2 Q6).

6

Example 4. Show that L = {anb2n | n ≥ 0} is context-free.

Proof. (CFG construction) The following CFG G generates L:

G : S → aSbb | ε

(PDA construction) The following PDA P recognizes L:

P = “On input w,

1. Push two x’s for every a read from the input. Go to step 2 when
a b is read.

2. Pop one x for every b read from the input.

3. Accept if the stack is empty.”

Showing Turing-recognizable Here, you can construct a Turing machine
T that recognizes L. Since T is not required to be a decider, it only
needs to halt for inputs x ∈ L. There is no need to worry about
whether T rejects by halting or rejects by looping on inputs not in
the language.

Example 5. Show that ETM is Turing-recognizable.

Proof. The following TM T recognizes L:

T = “On input ⟨M⟩,

1. For k = 1, 2, 3, . . .,

(a) For each of the first k strings in string order, simulate M on
it for k steps.

(b) If at any point M accepts, then accept.”

If L(M) ̸= ∅, then there’s some i such that the ith string in string
order is accepted by M in n steps for some n. Then by the end of
iteration k = max{i, n}, T has accepted ⟨M⟩.

Conversely, if T accepts ⟨M⟩, then there’s some k such that one of
the first k strings in string order is accepted by M, so L(M) ̸= ∅.

Showing decidable This involves constructing a decider D for the lan-
guage L. Make sure that it halts both on inputs that are in the
language and inputs that are not in the language.

If L asks about some property about a DFA, NFA, CFG, or PDA, it
is often helpful to use a decider for languages we already proved
decidable, including ADFA, EDFA, EQDFA, ACFG, ECFG (see Figure 1,
Table 3). This is a reduction, where you modify your input to get

7

something that can be passed into the decider for one of these lan-
guages, giving a solution that is often simpler than if you wrote an
algorithm from scratch.

Example 6. Show that ALLDFA = {⟨M⟩ | DFA M satisfies L(M) = Σ∗}
is decidable.

Proof. The following TM D decides ALLDFA:

D = “On input ⟨M⟩,

1. Construct the DFA M′ that recognizes the complement of L(M).

2. Run the EDFA decider on ⟨M′⟩ and return the result.”

The decider works because ⟨M⟩ ∈ ALLDFA iff ⟨M′⟩ ∈ EDFA.

Showing a language does not belong to a certain class

We finish off this review by reviewing some tips for showing that a
language L does not belong to one of the classes we have studied.

Showing non-regular This is most commonly done using the pumping
lemma, where we assume the language is regular and thus have a
pumping length p. We then show that there is some string s ∈ L
(|s| ≥ p) that violates the lemma. Remember that you only need
to give one string s, constructed for some general p, but you need
to argue that there is no way to split it up into s = xyz (|xy| ≤ p,
|y| > 0) such that xyiz ∈ L for every i. In other words, you have to
argue that no matter how the string gets cut up, there is some i for
which xyiz /∈ L. In some cases it is more convenient to “pump up”
(i > 1) and in other cases to “pump down” (i = 0).

Sometimes, it is possible to use closure properties to show that if L
is regular then some other L′ (which is known to be non-regular) is
also regular, which gives a contradiction.

Example 7. Show that L = {anb2n | n ≥ 0} is not regular.

Proof. Suppose L is regular. For pumping length p, consider the
string s = apb2p ∈ L (|s| ≥ p). Any way of writing s = xyz where
|xy| ≤ p and |y| > 0 will have y be a non-empty substring of the
ap portion of s. So xz will have too few a’s to be in L, violating the
pumping lemma.

Showing non-context-free The context-free pumping lemma can be used
here, similarly to how you show non-regularity. However, using the
context-free version often requires more case work, mainly because
there are more ways to split s up into 5 parts uvxyz (|vxy| ≤ p,

8

|vy| > 0). Some ways of doing case work can be a lot more com-
plicated than other ways, so it’s recommended to spend some time
thinking about what cases to have to simplify your solution.

Look out for situations where your solution can be simplified by
closure properties. A particularly handy one is CFL ∩ regular is a
CFL.

Example 8. Show that L = {0k1l0m1n0k1l0m1n | k, l, m, n ≥ 0} is not
context-free.

Proof. Suppose L is context-free. Then

L′ := L ∩ 0∗1∗0∗1∗ = {0a1b0a1b | a, b ≥ 0}

would be context-free, but it is not (see below), hence a contradic-
tion. So L cannot be context-free.

To show that L′ is not context-free, assume for the sake of contradic-
tion that it is. Then for pumping length p > 0, consider the string
s = 0p1p0p1p ∈ L′ (|s| ≥ p). Note that any way of writing s = uvxyz
(|vxy| ≤ p, |vy| > 0) falls under one of two cases:

Case 1: Either v or y crosses a block boundary.4 Then uv2xy2z won’t 4 Here, a block is defined to be a maximal
substring with one distinct character, so
that s consists of 4 blocks: 0p, 1p, 0p, and
1p.

even be of the form 0∗1∗0∗1∗, since the 0’s and 1’s near the
crossed block boundary will be mangled.

Case 2: Neither v nor y crosses a block boundary. Then since vxy
can span at most 2 blocks, the 4 blocks in uv2xy2z cannot all have
the same length.

In either case, uv2xy2z /∈ L, thus violating the pumping lemma.

Showing undecidable The standard approach for showing undecidabil-
ity is a reduction from a known undecidable language such as ATM

to L. In other words, assuming there’s a decider R for L, we can use
it to construct a decider S for ATM, which is a contradiction since
ATM is undecidable.

One particular approach to constructing the reduction is the compu-
tation history method. When L is of the form

{⟨P⟩ | P is an instance of X problem and P has a solution},

there’s a mapping reduction from ATM to L that converts ⟨M, w⟩
to a problem instance P where checking whether P has a solution
is equivalent to checking whether there’s an accepting computation
history of M on w.

We can also use the recursion theorem in a proof by contradiction,
as described earlier in the notes.

9

Example 9. Show that ALLLBA is undecidable.

Proof. Reduce from ATM using the computation history method.
Here, a “problem instance” P is an LBA, and a “solution” is a string
that the LBA doesn’t accept.

Assuming R decides ALLLBA, construct the decider S that decides
ATM:

S = “On ⟨M, w⟩,

1. Construct the LBA B that checks that it’s input is not an accepting
computation history of M on w:

B = “On input x,

(a) Check whether x begins with the start configuration of M on
w. If not, accept.

(b) Check whether x ends with an accepting configuration of M
on w. If not, accept.

(c) For each consecutive pair of configurations in x, check whether
they violate M’s transition function. This involves going back
and forth between the two configurations, crossing off sym-
bols as they get compared. (The crosses are erased afterwards.)
Once a violation is found, accept.”

2. Run R on B. If R accepts, then reject. If R rejects, then accept.”

S works because L(B) = Σ∗ iff there’s no accepting computation
history of M on w, i.e., ⟨M, w⟩ /∈ ATM.

Showing Turing-unrecognizable The standard approach is to construct a
mapping reduction from a Turing-unrecognizable language such as
ATM to L (ATM ≤m L). This involves constructing a computable
function f such that x ∈ ATM ⇐⇒ f (x) ∈ L.

Example 10. Show that ALLTM = {⟨M⟩ | TM M is such that L(M) = Σ∗}
is Turing-unrecognizable.

Proof. We show ATM ≤m ALLTM. The mapping f is defined as

f (⟨M, w⟩) = Turing machine T given by

T = “On input x,

1. Interpret x as a natural number and run M on w for x steps.

2. If M hasn’t accepted, accept. Otherwise, reject.”

If M accepts w, then suppose it takes n steps. Then T rejects n so
⟨T⟩ ̸∈ ALLTM.

Conversely, if ⟨T⟩ ̸∈ ALLTM, then there’s an x that T rejects. That
means that M accepts w within x steps.

10

This concludes our review of problem-solving techniques and also
our midterm review. Besides reading through these notes, we recom-
mend you practice with the sample midterms to get a sense for what
the midterm will look like. We will also be holding midterm review
sessions on Monday and Tuesday from 7:30pm to 9:30pm, where you
can get further practice with the content.

	Recitation 06: Recursion Theorem + Midterm Review
	Recursion Theorem
	Midterm review

