Recitation 06: P and NP

This recitation covers some basic definitions and tools of complexity
theory.

In the first half of the semester, we learned about computability
theory, where we placed languages in classes (regular, context-free,
decidable, T-recognizable) based on whether they could be solved us-
ing certain models of computation. We now move on to complexity
theory, where we restrict our attention to decidable languages and first
focus on determining how much time is required to decide them.

Time complexity for deterministic models

To determine the time complexity of a language, we must first define
what it means for a Turing machine to run in ¢(n) time, where t : N —
N.

Definition 1. A single-tape deterministic TM M runs in time ¢(n) if M
halts in at most t(n) steps on all inputs of length .

Definition 2. TIME(t(n)) = {B| some single-tape deterministic TM
M runs in O(t(n)) time and L(M) = B}.

We can now define our first time complexity class.
Definition 3. P = Uyepn TIME(n").

In words, P is the set of languages that can be decided in cn* time
for constants c, k. These are the languages that can be decided in poly-
nomial time. To show that a language is in P, we typically must con-
struct a TM that decides that language, then argue that the TM halts
in polynomial time.

Model independence

While Definitions 1 and 2 require a single-tape deterministic TM, Def-
inition 3 is model independent. This means that for all reasonable deter-
ministic models of computation, P defines the same class of languages.
This is useful because we are not restricted to any specific determinis-
tic model when proving languages are in P.

A TM runs in O(t(n)) time if it runs in
< ct(n) time for some constant ¢ > 0
independent of n.

Time complexity for nondeterministic models

We define the analogous terms for nondeterministic TMs.

Definition 4. A nondeterministic TM N runs in time #(n) if all of the
threads of N halt in at most ¢(1) steps on all inputs of length n.

Definition 5. NTIME(t(n)) = {B| some NTM N runs in O(t(n)) time
and L(N) = B}.

Intuitively, this means that the tree consisting of all the branches of
N’s computation can have height at most t(n), as shown below. Note
however that these definitions do not limit the width of the tree, and
there could be a non-polynomial number of branches, as long as each
branch has polynomial length.

Start
Halt B] . t(l/l)
AN e N
Halt Halt Halt Halt Halt

Definition 6. NP = e NTIME (1b).

In words, NP is the set of languages decided by some NTM in poly-
nomial time. This definition is again model independent for all rea-
sonable nondeterministic models of computation.

Certificates for NP

Intuitively, NP consists of languages L for which we can verify mem-
bership quickly. For an input x € L, there is some short “certificate” ¢
such that if given c, it is easy to confirm that x is in L. Here are some
examples of certificates for instances of languages in NP:

e If a graph G € HAMPATH, the certificate would be the sequence
of nodes corresponding to the Hamiltonian path in G. It is certainly
polynomial time to check that each node in the sequence is in G,
all nodes in G appear in the sequence exactly once, and all pairs of
adjacent nodes in the sequence are connected by an edge in G.

Note the difference between acceptance
and runtime: for an NTM to accept an
input, it is enough for one thread to ac-
cept. For an NTM to run in time £(n), all
threads need to halt in that time.

Here, “short,” “quickly,” and “easy” all
mean polynomial in |x|.

e For the SUBSET-SUM language, defined as {(S,t) | S = {x,..., xx}
and 3{y1, ..., y;} C S such that E£:1 y; = t}, the certificate would be
¢ = {y1,...y1}. Given ¢, it is easy to check that ¢ C S and that the
sum of the elements of c is t.

This concept can be formalized with the following theorem.

Theorem 7. L € NP <> there exists verifier TM V such that L(V) € P
and (x € L <= there exists ¢ such that |c| = O(poly(|x|)) and (x,c) €
V).

Proof. Informally, we want to show that L € NP <= strings in L have
short and quickly checkable certificates, and strings not in L don’t.

(=) Let L € NP. Then, there exists NTM N that decides L in poly-
nomial time. We will show that strings in L have short and quickly
checkable certificates. Construct TM V which takes in (x,c) and ac-
cepts iff ¢ is an accepting computation history of N on x. From our
previous algorithms for checking that computation histories are valid
and accepting, we know that V runs in polynomial time. Then, for all
x € L, let c be the computation history of N on x. We know that c is
short since N runs in polynomial time.

(<=) Let language L have short and quickly checkable certificates
for strings in L. We will show that L € NP. Let V be the verifier for L
that runs in time ¥ for inputs of length #, for some constant k. For an
input x of length 1, since V accepts (x, c) for some certificate c in time
n*, we know that |c| won't exceed n¥. We can thus build NTM N: on
input x, nondeterministically guess certificate ¢ of length at most n*.
Run V on (x,c) and accept if and only if V accepts. N will accept x
if and only if there exists a ¢ such that V accepts (x,c), so L(N) = L.
All threads will halt in polynomial time since |c| is polynomial, and V
runs in polynomial time. O

Given Theorem 7, it is now easy to show that a language L € NP.
To construct an NTM running in polynomial time that decides L, we
can

1. Think of a (short, easy to check) certificate for strings in L.
2. Build the following NTM. On input x:

(a) Guess the certificate c.

(b) Check whether or not c is a valid certificate for x. Accept if so.
Else, reject.

Intuitively, think of the computation his-
tory as all the nondeterministic choices
that N made on an input. These choices
specify a thread, and V just needs to
check whether this thread leads to an ac-
cept state.

A small detail on guessing: since a TM
a fixed number of states, we can’t guess
the entire ¢ all at once (since the number
of possibilities may depend on n). In-
stead we can guess c bit-by-bit.

Some examples

HAMPATH € NP

Recall that HAMPATH = {(G,s,t) : there is a Hamiltonian path from s to ¢}.
Here, G is a directed graph, and s and t are two vertices in G. A Hamil-
tonian path from s to t is a sequence of vertices s = vy,vp,...,0, =t
where every pair of vertices (v;,v;,1) are connected by a (directed)

edge. Let us show that HAMPATH € NP.

Intuitively, the idea is to exhibit an easy-to-verify, polynomial-sized
certificate for the existence of a Hamiltonian path between s and t.
What could such a certificate be? Well, if you think about it, the
Hamiltonian path itself is such a certificate! If you already know the
sequence of vertices s = vq,vy,...,v; = t, then it’s easy to check that
this sequence is a Hamiltonian path.

Let us formalize this intuition into an non-deterministic polynomial
time Turing machine. The NTM is going to guess (nondeterminis-
tically) the sequence vy,...,v, and then check whether it is a valid
Hamiltonian path, that s = v; and v, = t, and that every vertex is
used exactly once.

Let us check that both guessing the sequence and checking that
it is a valid Hamiltonian path take polynomial time. The sequence
v1,...,Up is polynomial in size: particularly, each vertex has a O(logn)
bit representation, so the total number of bits to represent vy, ..., vy is
O(n x logn). Then, nondeterministically guessing these O(n x logn)
bits takes only O(n x log n) time. Secondly, once we have vy, . ..,v,, we
need to check that each v; — v; 1 is an edge in the graph. To do this,
we can scan through the description of G and see if (v;,v;11) € E(G).
This will take polynomial time per check, for a total of polynomial
time to verify that each pair of consecutive vertices is connected by an
edge. Next, checking s = v; and ¢ = v, is easy. Finally, we need to
check that every vertex is used exactly once, which can be done by
checking off the vertices from a list as they appear in the path.

COMPOSITES € NP

Let us define COMPOSITES = {m € IN : nis composite}. Recall
that a composite number is one that is not prime, i.e. m = pg where
p,q € Nand p,q # 1.

Let us show that COMPOSITES € NP. Again, the idea is to iden-
tify a certificate for m € COMPOSITES. Here, we can take the certifi-
cate to be the factorization m = pq. Our NT M will non-deterministically
guess the factorization (p,q), and then check that m = pg and p,q €
IN\{1}.

Let us check that both the guessing of (p,q) and checking that it

is a proper factorization take polynomial time. First, what is the size
of (p,q) in terms of the size of m? Note that to represent m, we need
to use O(logm) bits to represent n in binary. So, the size of m (i.e.,
the input size) is O(logm). Representing p and g as bit strings also
takees O(logm) bits, since p,q < m. Thus, we can guess (p,q) in time
polynomial in the input size. Next, checking m = pg can be done by
multiplying pq via long multiplication and checking equality, both of
which can be done in polynomial time. Also, checking p,q # 1 can
easily be done.

	Recitation 06: P and NP
	Time complexity for deterministic models
	Time complexity for nondeterministic models
	Some examples

