18.404/6.5400 RECITATION 5

This recitation covers configurations and the computation history method, with examples.

1 TM Configurations

A configuration of a Turing machine (textbook p.168) completely represents the status of
the TM. A configuration consists of the Turing machine’s current:

- state ¢ of the finite control,
- location/position of the head p, and
- tape contents t.

When writing out configurations as a string, we usually use a standard encoding. We
write out the tape contents, then insert the state into the tape contents right before the
symbol that the head is at. In other words, we use uqv, where uv is the tape contents, ¢
is the state, and the head is currently at the first symbol of v. For example, if the tape
contains the string abcd, the state of the machine is g5, and the head is currently above c,
we insert g5 right before ¢ to get the encoding abgscd.

1.1 Each configuration can only yield one next configuration

Given a configuration of a deterministic TM, we can always figure out what the next config-
uration will be. This is because a configuration contains all the inputs needed to calculate
the transition function of the TM. Specifically, if we initialize the Turing machine with the
current configuration, then simulate one step, this gives the next configuration.

1.2 A ga is Decidable

(textbook Theorem 5.9) Let a linear bounded automaton (LBA) be a Turing machine which
is not allowed to move its head off its input. Show that the language

Aga = {(B,w) | B is a LBA that accepts string w}

is decidable.

Proof. The key is to realize that a LBA has a finite number of possible configurations.
A general Turing machine can access an arbitrary number of tape cells, but a LBA can only
move on and modify the tape area containing the input. Specifically, to calculate the number
of possible configurations:

e The number of possible states is |Q)|.
e The number of possible head locations is the length of the input; call it n.

e The number of possible tape contents is |I'|", where I is the tape alphabet.



So the number of possible configurations is exactly |@| - n - |T'|™. Call this number K.

Now what happens if we simulate the LBA B for K steps? If after K steps it has halted,
we will know whether it has accepted or not. If it has still not halted, then it has gone
through K + 1 configurations. But since there are only K unique configurations, B must
have repeated a configuration somewhere, which means it must be looping.

We can therefore construct a decider L for A ga:

L = “ On input (B, w), where B is a LBA and w is a string:

- Simulate B on w for K steps, where K = |Q|-n - |T'|", and n is the length of w.
- If the simulation accepts, accept.

- If the simulation rejects or has not halted, reject.

2 Computation History Method

Often, our reduction proofs in this class have a step that looks like “Simulate M on w.” But
what if we are working with a model of computation which can’t simulate Turing machines?

2.1 Computation Histories

Let the computation history of M on w be the sequence of configurations C1,Cs,...,Cy
that M goes through when given input w. Note that for a given deterministic M and input
string w, there exists only one computation history of M on w.

When we write out computation histories on a tape, we encode each configuration C; as
a string ¢;. We then join together the strings c;, separating them by a marker symbol #
(which we assume by convention is not in any of the original strings ¢;). Then, our entire
encoded history looks like ¢y #co# . . . #cp.

2.2 The Idea

If M accepts w, then the computation history of M on w will satisfy the following three
properties:

1. (' is the correct start configuration: the machine is in the start state gg, the head is
at the start of the tape, and the tape contains the input w.

2. C% is an accepting configuration: the machine is in the accept state gacc.

3. For each ¢ € [1,k — 1], C; yields C;y; according to the transition function of M.

The big ideas at play are that:

e An accepting computation history of M on w exists if and only if M accepts w, and

e Checking whether a given computation history is a accepting/rejecting computa-
tion history of M on w is easier than simulating M on w.



2.3 When to use this method
The computation history method is often suitable for problems which:

e Deal with existence. Philosophically, this is because M accepts w if and only if there
erists some accepting computation history of M on w.

e Involve models of computation which are not as powerful as Turing machines (and
thus can’t simulate them). When simulating M on w is not possible, it’s natural to
ask whether one can instead check computation histories of M on w. I like to describe
this using the pset grader mentality:

I might not remember how to solve this problem by myself, but I am 100%
absolutely certain that every step in this student’s solution is correct (or that
a certain step in this student’s solution is wrong).

Indeed, the examples we’ve seen using the computation history method fall roughly under
these criteria: Ega, ALLcFg, etc.

2.4 FEipa is Undecidable

Let’s try to use the computation history method to prove that the following language is
undecidable:

Eiga = {(B)| Bis a LBA and L(B) = (i}

To show undecidability, we want to reduce from Ary. To do so, we construct a LBA
which tests if a given computation history for M on w is accepting. If M accepts w, then
there is some accepting computation history, and the LBA will accept this string. If M does
not accept w, then there is no accepting computation history, and the language of the LBA
will be empty.

To check whether a computation history ci#co# . .. #ci is accepting, we need to check:

1. The start configuration is encoded correctly: ¢; = gow (start state go, input w on
tape).

2. Each transition from ¢; to ¢;41 is correct.
3. c¢; contains the accept state gacc.

For our constructed LBA to exist, we need to show that a LBA can test all these
conditions, given the computation history as input. For the start configuration, we need to
check that ¢; matches the finite string gow; as this is a finite amount of information, we can
encode it into the states of the LBA. To check a transition ¢; — ¢;41, the LBA can sweep
across the two configurations, comparing matching portions of them and checking that the
transition is valid. For the last configuration, the LBA just needs to check that g.c. is on
the tape.

After arguing we can construct an LBA to check computation histories, we can write
out our reduction:

Proof. Reduce from Atpy.

Assume for sake of contradiction that we have a decider for Eiga; call it D. Then
construct a decider for Aty as follows:
L = “ On input (M, w):



1. Construct a LBA, By, which tests if a given computation history for M on w is
accepting or not.

2. Feed (B, into D.

3. If D accepts, then L(B) is empty and there is no accepting computation history of B
on w, o we can reject.

4. If D rejects, then L(B) is nonempty and there is an accepting computation history of
B on w, so we can accept.

O

2.5 ALLppa is Undecidable

Let’s use the computation history method to show another language is undecidable:
ALLppa = {{M)| M is a PDA and L(M) = ¥*}

Proof. Reduce from Atpy.
Assume for sake of contradiction that we have a decider for ALLppa; call it D. Then
construct a decider for Aty as follows:
L = “ On input (M, w):
1. Construct a PDA, Py ,,, which accepts all strings that are not an accepting computa-
tion history of M on w.

2. Feed (Pys,) into D.

3. If D accepts, that means that there’s no accepting computation history of M on w , so
we can reject. (otherwise (Pas ) would have rejected that history, and hence D would
have rejected as well)

4. Similarly, if D rejects, accept.”

The overall logic in this reduction is very similar to the previous problem. The only
new component is the structure of Pps,: instead of checking for accepting computation
histories, we check for rejecting ones.

When checking accepting computation histories, we need multiple conditions (start state,
transitions, accept state) to all hold. However, when checking for non-acceptance, we only
need one of the conditions to fail. We can then split the checking into threads, with each
thread checking a single condition.

The main idea behind the construction is that the PDA can non-deterministically check
for all the possible errors in the history, and accept a string if it has any error. Recall that
w is an accepting computation history if and only if:

1. C1 = qow
2. ¢;41 follows by a single legal transition from ¢;
3. ¢; has an accept state

To check that (1) does not hold, Pys., can hard code the expected ¢; and accept if it
does not match. Similarly for (3), it can scan the input and accept if it never sees an accept
state of the Turing machine. Checking that (2) does not hold for some i is a little trickier.

To check for (2), we would hope to use the stack to store ¢; and compare it with ¢;11.
After all, if the computation history is legitimate, they should be equal except for at most



two consecutive places (the old and new locations of the head). The only issue is that when
we push ¢; into the stack it comes out reversed. To deal with this, we change the definition of
the computation history so that it reverses every other configuration. In particular, instead
of c1#caftestcadt ..., the computation history is defined as ci#cl#cs#cl# .... That
way, when we push ¢; into the stack, it comes out in the same orientation as c;41.

To summarize, Py, accepts all strings other than an accepting computation history
of M on w, where every other configuration is written in reverse. To do so, it none-
deterministically pushes ¢; on the stack, and looks for an error in the transition to c¢;41
by comparing one element at a time. If any of those threads finds a discrepancy it accepts.
It also has a hardcoded expectation for ¢; and it accepts if it does not match it, and it
accepts if it never sees an accept state of the Turing machine.

Since the language of Pyy,, is all strings if and only if M does not accept w, it allows us
to use a decider for ALLppa to construct a decider for Aryr, which proves that ALLppa is
not decidable.

O



	TM Configurations
	Each configuration can only yield one next configuration
	A_LBA is Decidable

	Computation History Method
	Computation Histories
	The Idea
	When to use this method
	E_LBA is Undecidable
	ALL_PDA is Undecidable


