
Recitation 05: Configurations and
Computation Histories

In this recitation, we look at computation histories, which provide a
powerful method of proving the undecidability of certain languages.

TM Configurations

A configuration of a Turing machine completely represents the status of
the TM. A configuration consists of the Turing machine’s current

• state q of the finite control,

• location/position of the head p, and

• tape contents t.

When writing out configurations as a string, we usually use a stan-
dard encoding uqv, where uv is the tape content, q is the state, and
the head is currently at the first symbol of v. For example, if the tape
contains the string abcd, the state of the machine is q5, and the head
is currently above c, we insert q5 right before c to get the encoding
abq5cd. For a deterministic TM (or any deterministic machine in gen-
eral), given the current configuration, we can always figure out the
next configuration by simulating one step of the machine.

ALBA is Decidable

Recall that an LBA, or linearly bounded automaton, is an automaton
that cannot move its head off the input string.

Theorem 1. ALBA = {⟨B, w⟩| B is an LBA that accepts string w} is decid-
able.

Proof. The key is to realize that a LBA has a finite number of possi-
ble configurations. A general Turing machine can access an arbitrary
number of tape cells, but a LBA can only move on and modify the

2

tape area containing the input. Specifically, since a configuration de-
pends only on the current state (of which there are |Q|), the head
location (of which there are n = |w|), and the tape contents (of which
there are |Γ|n), we can bound the number of possible configurations as
K = |Q| · n · |Γ|n. Note how we specify K is an upper

bound on the number of possible con-
figurations, not the number of configu-
rations of the LBA: there is no reason
that the LBA must go through all K con-
figurations.

Now what happens if we simulate the LBA B for K steps? If after K
steps it has halted, we will know whether it has accepted or not. If it
has still not halted, then it has gone through K + 1 configurations. But
since there are at most K unique configurations, B must have repeated
a configuration somewhere, which means it must be looping.

We can therefore construct a decider L for ALBA.

LLL: On input ⟨B, w⟩:

1. Simulate B on w for K steps, where K = |Q| · n · |Γ|n and n is
the length of w.

2. If the simulation accepts, accept.

3. If the simulation rejects or has not halted, reject.

Computation History Method

So far in this course, if we want to prove a language involving a partic-
ular model of computation (e.g. TMs, multi-tape TMs) is undecidable,
we often reduce from ATM. In the proof, we often create an instance
of that model of computation and include a step that looks like “sim-
ulate a TM M on w using my model of computation in order to check
whether M accepts/rejects on w,” leading to a contradiction as this
decides ATM. But what if we are working with a model of computa-
tion which can’t simulate Turing machines? It turns out that the model
of computation may still have the capability of checking whether the
work done by the TM, or the computation history, leads to an accept –
this is the computation history method.

Definition 1. Let the computation history of M on w be the sequence of
configurations C1, C2, . . . , Ck that M goes through on input w. Note that for a
given deterministic M and input string w, there exists only one computation
history of M on w.

When we write out a computation history on a tape, we often en-
code it as c1#c2# . . . #ck, where ci are the string encodings of the con-
figurations Ci and # is a delimiter symbol that we assume was not part
of M’s alphabet.

If M accepts w, then the computation history of M on w will satisfy
the following three properties:

3

1. c1 is the correct start configuration q0w: the machine is in the start
state q0, the head is at the start of the tape, and the tape contains
the input w.

2. ck is an accepting configuration: the machine is in the accept state
qacc.

3. For each i ∈ {1, . . . , k − 1}, ci yields ci+1 according to the transition
function of M.

For M to not accept w, then there exists no accepting computation
history of M on w. Checking whether a string is not an accepting
computation history amounts to checking that any one of the three
properties are false, which often is doable with a simple model of
computation.

In the remaining examples, we review two of the computation his-
tory proofs we’ve seen in lecture already, ELBA and ALLPDA, before
looking at a new example E2WAY−PDA.

ELBA is Undecidable

Example 1. Show that

ELBA = {⟨B⟩| B is a LBA and L(B) = ∅}

is undecidable.

Solution 1. To show undecidability, we want to reduce from ATM. To do so,
we construct a LBA which tests if a given computation history for M on w
is accepting. If M accepts w, then there exists some accepting computation
history, and the LBA will accept that string. If M does not accept w, then
there is no accepting computation history, and the language of the LBA will
be empty. Again, note how we can assume the in-

put string to the LBA is in the form of a
computation history (i.e. it has the right
encoding).

To check whether a computation history c1#c2# . . . #ck is accepting, we
need to check:

1. The start configuration is encoded correctly as c1 = q0w.

2. Each transition from ci to ci+1 is correct.

3. ck contains the accept state qacc.

So our goal is to design a LBA (given ⟨M, w⟩) that can check all three
conditions. For the first condition, we can check that c1 matches the finite
string q0w using the states of the LBA. For the second condition, to check
a transition ci → ci+1, the LBA can sweep across the two configurations,
comparing matching portions of them and checking that the transition is valid.
For the last configuration, the LBA just needs to check that qacc is on the tape. Note how we are designing a LBA spe-

cific to ⟨M, w⟩, so we can “hardcode”
q0w using a finite number of states, as
q0w is independent of the input to the
LBA.

4

Summing it all together: We proceed via a reduction from ATM. Assume
for sake of contradiction that we have a decider for ELBA; call it D. Then
construct a decider for ATM as follows:

LLL: On input ⟨M, w⟩:

1. Construct a LBA, BM,w, which tests if a given computation history
for M on w is accepting or not by checking each of the three conditions
as described above.

2. Feed ⟨BM,w⟩ into D.

3. If D accepts, then L(BM,w) is empty and there is no accepting com-
putation history of M on w, so we reject.

4. If D rejects, then L(BM,w) is nonempty and there is an accepting
computation history of M on w, so we accept.

ALLPDA is Undecidable

In the previous example problem, we saw how we can check for an
accepting computation history using LBAs. Here, we work with a more
basic model of computation, PDAs, which we are only able to show
have the capability for checking whether a string is not an accepting
computation history. However, since we are instead looking at the
language being Σ∗ rather than ∅, this is enough to create the reduction
from ATM.

Example 2. Show that

ALLPDA = {⟨M⟩ | M is a PDA and L(M) = Σ∗}

is undecidable.

Solution 2. We first outline our reduction, which is similar in flavor to the
previous example, but we instead need a PDA that accepts all strings except
an accepting computation history of M on w.

We reduce from ATM. Assume for sake of contradiction that we have a
decider for ALLPDA; call it D. Then construct a decider for ATM as follows:

LLL: On input ⟨M, w⟩:

1. Construct a PDA, PM,w, which accepts all strings that are not an
accepting computation history of M on w.

2. Feed ⟨PM,w⟩ into D.

3. If D accepts, that means that there’s no accepting computation history
of M on w , so we reject.

5

4. Similarly, if D rejects, we accept.”

The big question now is how to design PM,w. As previously noted, when
checking accepting computation histories, we need multiple conditions (i.e.
that of the start state, transitions, and accept state) to all hold. However,
when checking for non-acceptance, we only need one of the conditions to fail.
Since PDAs are non-deterministic, we can non-deterministically go down a
branch checking a single condition, and we accept on that branch (and thus
overall) if the condition fails. In a rough sense, this corresponds to

how non-determinism allows us to com-
pute logical ORs (between several condi-
tions) really easily but not logical ANDs.

Recall that c1#c2 . . . #ck is an accepting computation history if and only if

1. c1 = q0w,

2. ci+1 follows by a single legal transition from ci for all i, and

3. ck has an accept state.

To check that (1) does not hold, PM,w can hard code the expected c1 (i.e.
write it into its states) and accept if it does not match. For (3), it can scan
the input and accept if it never sees an accept state of the Turing machine. To
check that (2) does not hold, we can non-deterministically choose a particular
i and focus on the specific case that checks whether (2) does not hold for that
i.

Our hope is to use the stack to store ci and compare it with ci+1. After
all, if the computation history is legitimate, they should be equal except for
at most two consecutive places (the old and new locations of the head), and
we can check whether this transition is correct based on finite state machine
of M. The only issue is that when we push ci into the stack, then pop it to
compare to ci+1, ci comes out reversed, which stops us from comparing the
strings. To deal with this, we encode our computation history in a more con-
venient fashion: we reverse every other configuration. In particular, instead
of c1#c2#c3#c4# . . . , the computation history is encoded as c1#cR

2 #c3#cR
4 #

That way, when we push ci into the stack, it comes out in the same orientation
as ci+1. Given ci and ci+1 in the correct order, we can design a PDA that
performs the check of whether ci+1 does not follow from ci or not. Note how we have not really changed

the essence of a computation history; we
have only changed its encoding.

To summarize, PM,w accepts all strings other than an accepting compu-
tation history of M on w, where every other configuration is written in re-
verse. To do so, it non-deterministically goes down any of the following three
branches:

1. Accept if c1 does not match q0w.

2. Accept if for some non-deterministically chosen i, ci+1 does not follow
from a transition from ci (use the stack to store ci, and compare it to ci+1

by popping it out, noting that we reversed the directions properly to check
the strings in the same order).

3. Accept if ck does not have an accept state.

6

Meta-analysis of the Computation History Method

A common question is when to use the computation history method
to prove undecidability. There really is no hard and fast rule for this,
but we can have some priors on when the method is suitable:

• The problem should roughly deal with existence. Philosophically,
this is because M accepts w if and only if there exists some accepting
computation history of M on w.

• The problem should involve models of computation which are not
as powerful as Turing machines (and thus can’t simulate them).
When simulating M on w is not possible, it’s natural to ask whether
one can instead check computation histories of M on w. One way to
describe this is using a (potential) grader’s mentality:

I might not remember how to solve this problem by myself, but I am 100%
absolutely certain that every step in this student’s solution is correct (or that
a certain step in this student’s solution is wrong).

Indeed, the two examples this recitation (ELBA and ALLPDA) fall under
these criteria.

Another thing to note is that for ELBA, we made a machine that only
accepts accepting computation histories of M on w, while for ALLPDA,
we made a machine that accepts everything except accepting computa-
tion histories of M on w. This is because the first machine’s language
is empty if and only if M rejects w (and thus dealing with the empti-
ness criterion makes sense), while the second machine’s language is
everything if and only if M rejects w (and thus dealing with the ALL
criterion makes sense). We can refer to them in the plural sense

of “computation histories” if we want
to allow M to be non-deterministic, but
more precisely for ATM, where we deal
with deterministic machines, we only
need to refer to the (single, if it exists)
accepting computation history.”

E2WAY−PDA is Undecidable

We look at one final example of using computation histories on a new
model of machine, the 2WAY− PDA.

Definition 2. A 2-way pushdown automaton (2WAY− PDA) is a non-
deterministic pushdown automaton that has a single stack and that can move
its input head in both directions on the input tape. In addition, we assume
that a 2WAY− PDA is capable of detecting when its input head is at either
end of its input tape. A 2WAY− PDA accepts its input by entering an accept
state.

As an exercise, prove that 2WAY− PDAs
are more powerful than normal PDAs.
Hint: can you design a 2WAY− PDA
that can recognize the language
{anbncn | n ≥ 0}?

Example 3. Show that

E2WAY−PDA = {⟨P⟩|P is a 2WAY− PDA and L(P) = ∅}

is undecidable.

7

Solution 3. This problem setup motivates us to use computation histories:
we’re dealing with the existence (of a string in the language of P), and we’re
dealing with a machine that is a weaker model of computation than a Turing
Machine. In addition, since we’re dealing with emptiness, we are motivated
to make a machine that only accepts accepting computation histories of M on
w in our reduction from ATM.

How can a 2WAY− PDA check for an accepting computation history of M
on w? Let’s assume that we are given the computation history in its standard
encoding of c1#c2# . . . #ck. We want to design P to check the three conditions
that we’ve seen before:

1. Check that c1 = q0w. This can be easily done by hardcoding q0w into the
state control of P or (equivalently) pushing a copy of q0w onto the stack
and checking c1 in reverse, popping the characters off the stack one-by-one.

2. Check that ci+1 follows from ci according to the transition function of M.
The issue we had with PDAs (that we dealt with in ALLPDA) is that in
order to compare ci and ci+1, we had to push ci on the stack and then pop
the characters off one-by-one, which meant it came out in reverse order. For
the ALLPDA situation this motivated us to reverse adjacent configurations
in our encoding. However, we don’t need to do that here: because P is a
2WAY− PDA, we can read the configuration ci+1 in backwards order, and
then we don’t need to change any encoding (alternatively, we can pop ci

onto the stack in backwards order).

3. Check that ck is an accepting configuration: we check that the state in the
configuration is an accepting one.

All of this looks good, with one minor caveat. After checking the ci → ci+1

transition, recall that with a PDA we had problems because we no longer had
a copy of ci+1 to check with ci+2 for the next transition, and we couldn’t go
backwards to “re-read” ci+1. For a 2WAY− PDA we have no such problem:
we simply reset the head back to the start of ci+1. This is roughly why a computation his-

tory proof can’t work for EPDA. In fact,
recall that it’s a decidable language!

Finally, we can write up precisely how the reduction works from ATM in
a very similar fashion to ELBA:

We proceed via a reduction from ATM. Assume for sake of contradiction
that we have a decider for E2WAY−PDA; call it D. Then construct a decider
for ATM as follows:

LLL: On input ⟨M, w⟩:

1. Construct a 2WAY− PDA, PM,w, which tests if a given computation
history for M on w is accepting or not by checking each of the three
conditions as described above.

2. Feed ⟨PM,w⟩ into D.

3. If D accepts, then L(PM,w) is empty and there is no accepting com-
putation history of M on w, so we reject.

8

4. If D rejects, then L(PM,w) is nonempty and there is an accepting
computation history of M on w, so we accept.

	Recitation 05: Configurations and Computation Histories
	TM Configurations
	ALBA is Decidable
	Computation History Method
	ELBA is Undecidable
	Meta-analysis of the Computation History Method
	E2WAY-PDA is Undecidable

