
Recitation 04: Undecidability, Unrecognizability, and
Reducibility

In this recitation we’ll practice working with reductions to show that
a language is undecidable or unrecognizable. We begin by provid-
ing a diagram summarizing the languages we’ve seen in lecture, and
whether they are decidable, recognizable, or unrecognizable. Then, we
review general and mapping reducibility. Finally, we work an example
using general reducibility to show that a particular language is unde-
cidable, and another example using mapping reducibility to show that
a particular language is both unrecognizable and co-unrecognizable.

Undecidability and unrecognizability

We proved the following facts about ATM in lecture.

Theorem 1. ATM is Turing-recognizable (T-recognizable) and undecidable.

Theorem 2. ATM is unrecognizable.

We define the class of co-Turing-recognizable languages as the class
of complements of recognizable languages.

Definition 1. Language B is co-Turing-recognizable if B is Turing-recognizable.

For example, ATM is co-Turing-recognizable because ATM is Turing-
recognizable.

We proved the following theorem in lecture.

Theorem 3. Language B is decidable iff both B and B are T-recognizable.

In other words, language B is decidable iff B is both Turing-recognizable
and co-Turing-recognizable. Figure 1 shows this visually, and lists sev-
eral more examples of undecidable and/or unrecognizable languages.

We proved that ATM is undecidable using a diagonalization argu-
ment. In the following theorem, we show that there are uncountably
many unrecognizable languages, using diagonalization as an interme-
diate step.

2

All languages

Decidable
T-recognizable co-T-recognizable

Regular

CFLs
AT M

HALTT M

ET M

AT M

HALTT M

ET M

EQT M

Figure 1: Undecidable or unrecognizable
languages we have seen in class.

Theorem 4. The set of T-unrecognizable languages is uncountably infinite.
A more detailed proof is given under
Corollary 4.18 in the textbook.Proof. We want to show that

1. The set of all TMs is countable, and

2. The set of all languages is uncountable.

We prove that the set of all TMs is countable by encoding each TM
as a string ⟨M⟩ ∈ Σ∗. We know Σ∗ is countable because there are only
finitely many strings of each length.

We prove that the set of all languages is uncountable as follows.
Each language L is a subset of the strings s1, s2, s3, . . . in Σ∗. We can
show a correspondence between each language and an infinite binary
string, with the ith bit of the binary string indicating whether string si

is in L. Then we use a diagonalization argument (similar to the proof
that R is uncountable) to show that the set of infinite binary strings is
uncountable.

Since each TM recognizes exactly one language, we conclude that
uncountably many languages do not have a corresponding TM. So the
set of unrecognizable languages is uncountable.

Reducibility

We have seen two types of reducibility in lecture: "general" reducibil-
ity and mapping reducibility. This notion of "general reducibility" is

fairly informal. It can be formalized as
Turing reducibility, which is described
in section 6.3 of the textbook (but that
material is optional for the course).

Definition 2 (General reducibility). Language A is reducible to language
B if the following holds: if we can solve B, then we can solve A using the
solver for B as a subroutine.

3

Informally, "A is reducible to B" implies that

1. If A is hard, then B is also hard, and

2. If B is easy, then A is also easy.

In other words, this means B is at least as hard as A. We can formalize
the notion that hardness of A implies hardness of B as follows.

Theorem 5. Suppose A is reducible to B (in the general sense). Then

1. If A is undecidable, then B is undecidable.

2. If B is decidable, then A is decidable.

In most cases, we use general reductions to show that a language is
undecidable (by showing that another language is reducible to it).

We have a second, related definition of reducibility. The condition that f is a computable
function means that there exists a Tur-
ing machine that takes input w and halts
with f (w) on the tape. In practice, this
applies to any transformation to w that
we can think of, as long as it does not
take infinite time.

Definition 3 (Mapping reducibility). Language A is mapping reducible
to language B if there exists a computable function f : Σ∗ → Σ∗ such that
w ∈ A iff f (w) ∈ B. We write this as A ≤m B.

In other words, we want f to map strings in A to strings in B, and
map strings not in A to strings not in B (as shown in Figure 2).

A B

f

Σ∗ Σ∗

f

Figure 2: Mapping reducibility. We
write A ≤m B if some computable func-
tion f maps strings in language A to
strings in language B, and maps strings
not in A to strings not in B.

Figure 2 also helps show the following theorem:

Theorem 6. If A ≤m B, then A ≤m B.

Proof. Suppose A ≤m B. Then there exists a computable function f
such that for all w ∈ Σ∗, we have w ∈ A iff f (w) ∈ B. This means that

1. If w ∈ A, then f (w) ∈ B.

2. If w /∈ A, then f (w) /∈ B.

By definition of complement, this can be rewritten in terms of A and
B as follows. For all w ∈ Σ∗,

1. If w /∈ A, then f (w) /∈ B.

4

2. If w ∈ A, then f (w) ∈ B.

Thus we have w ∈ A iff f (w) ∈ B. We conclude that A ≤m B.

We often use mapping reductions to show that a language is unrec-
ognizable. We can also use mapping reductions to show that a lan-
guage is undecidable (however, it is more common to prove undecid-
ability using general reductions). The following theorem summarizes
the ways in which we use mapping reductions.

Theorem 7. Suppose A ≤m B. Then

1. If A is unrecognizable, then B is unrecognizable.

2. If B is recognizable, then A is recognizable.

3. If A is undecidable, then B is undecidable.

4. If B is decidable, then A is decidable.

Don’t be confused about the direction in which mapping reductions
take place. Given A ≤m B, the direction of the notation ≤m is meant to
compare the difficulty of A and B. That is, solving A is not more dif-
ficult than solving B. Remembering the intuition behind the notation
helps us to understand the content of Thm. 7. Solvers, or more formally oracles, which

we will see later in the course, instantly
decide a language – there is no looping.

Notice that complements of a language are always generally re-
ducible to the original language, i. e., A is reducible to A. If we have a
solver to A, we may always reverse its answer to solve A. However, the
same is not true for mapping reductions! Notice that ATM ̸≤m ATM

since ATM is unrecognizable but ATM is recognizable. That means we
can’t use general reducibility to show that a language is unrecogniz-
able. Instead we use general reductions to show undecidability, and
mapping reductions to show unrecognizability.

This also tells us that mapping reducibility is a stronger condition
than general reducibility. If A ≤m B, then A is also reducible to B in
the general sense. However, if A is reducible to B in the general sense,
it is not guaranteed that A ≤m B. For example, ATM is reducible to
ATM in the general sense, but ATM is not mapping reducible to ATM.

Problem solving strategies: undecidability and unrecognizability

1. To show that language B is undecidable, find a general reduction from
some undecidable language A to B. Our proof outline is generally
as follows:

• Assume for contradiction that there is a TM R that decides B.

• Then construct a TM S that decides A, using R for a subroutine.
Often, we use A = ATM.

5

2. To show that language B is unrecognizable, find a mapping reduction
from some unrecognizable language A to B (written as A ≤m B).
Describe a computable function f such that w ∈ A iff f (w) ∈ B.
Often, we use A = ATM. Describing f serves as a shorthand for the
following proof outline:

• Assume for contradiction that there exists a TM R that recognizes
B.

• Then construct a TM S that takes an input w, computes f (w),
runs R on f (w), and outputs the result of R on f (w). S will
decide A.

Example problems

In the following example (Problem 5.10 in the textbook), we prove that
a language is undecidable using a general reduction from ATM.

Example 1. Show that

TTTM = {⟨M, w⟩ | M is a 2-tape TM that writes a nonblank symbol on its

second tape when run on w}

is undecidable.

Solution 1. We construct a general reduction from ATM to TTTM. Assume
for contradiction that R is a decider for TTTM. We construct the following
decider S for ATM.

SSS: On input ⟨M, w⟩:

1. Construct the following 2-tape Turing machine TM:

TMTMTM: On input x:

(a) Simulate M on x using the first tape of TM.

(b) If M accepts, write a nonblank symbol on the second tape.

2. Run R on ⟨TM, w⟩.

3. Accept if R accepts.
Reject if R rejects.

If M accepts w, then when TM is run on w, it writes a nonblank symbol on
its second tape. So ⟨TM, w⟩ ∈ TTTM. Then R accepts ⟨TM, w⟩, so S also
accepts ⟨M, w⟩.

If M rejects w, by halting or looping (or if the string ⟨M, w⟩ is garbage),
then when TM is run on w it does not use its second tape. So ⟨TM, w⟩ /∈
TTTM. Then, R halts and rejects ⟨TM, w⟩, so S also halts and rejects ⟨M, w⟩. It’s possible that M rejects w by loop-

ing forever. However, since we have as-
sumed that R decides TTTM , R will al-
ways halt, meaning that S will also al-
ways halt.

6

Hence S decides ATM. This is a contradiction because we know ATM is
undecidable. We conclude that TTTM is undecidable.

In the next examples, we prove that a language is unrecognizable
and co-unrecognizable using mapping reductions from ATM.

Example 2. Show that

REGTM = {⟨M⟩| M is a TM and L(M) is a regular language}

is unrecognizable.

Solution 2. We will show that

ATM ≤m REGTM.

That is, we need to find a computable function f such that ⟨M, w⟩ ∈ ATM iff
f (⟨M, w⟩) = TM,w ∈ REGTM.

In other words: if TM M rejects w, then we want the language of TM,w

to be regular. If TM M accepts w, we want the language of TM,w to be
nonregular. We can design TM,w such that if M accepts w, then L(TM,w) is
a specific nonregular language (we use {0k1k | k ≥ 0} in this example).

We construct TM,w as follows.

TM,wTM,wTM,w: On input x:

1. Run M on w.

2. If M accepts, check if x = 0k1k for some k ≥ 0. If so, accept.

3. Otherwise, reject.
It’s possible that M rejects w by looping
forever. In that case, TM,w also rejects
by looping forever (on all inputs). How-
ever, we cannot write "if M loops for-
ever, then loop" as part of the program
for TM,w. This is because TM,w can’t de-
termine that M will loop forever, since
the halting problem HALTTM is unde-
cidable.

If M accepts w, then TM,w accepts precisely the strings of the form 0k1k.
So L(TM,w) = {0k1k | k ≥ 0} which is a nonregular language.

If M rejects w, by halting or looping (or if the string ⟨M, w⟩ is garbage),
then TM,w rejects all inputs (either by halting or looping). So L(TM,w) = ∅
which is a regular language.

This proves that ATM ≤m REGTM. We know ATM is unrecognizable, so
REGTM is also unrecognizable.

Example 3. Show that REGTM is co-T-unrecognizable.

Solution 3. The proof is similar to the last problem. We will show that

ATM ≤m REGTM.

We find a computable function f such that ⟨M, w⟩ ∈ ATM if and only if
f (⟨M, w⟩) = TM,w ∈ REGTM.

In other words: If M rejects w, then we want the language of TM,w to be
nonregular. If M accepts w, then we want the language of TM,w to be regular.

We construct TM,w as follows.

7

TM,wTM,wTM,w: On input x:

1. If x is of the form 0k1k, accept.

2. Run M on w. Accept if M accepts.

If M accepts w, then TM,w accepts all strings. So L(TM,w) = Σ∗, which is a
regular language.

If M rejects w, by halting or looping (or if the string ⟨M, w⟩ is garbage),
then TM,w only accepts inputs of the form x = 0k1k and rejects all other
inputs (either by halting or looping). So L(TM,w) = {0k1k | k ≥ 0}, which
is a nonregular language.

We have shown that ATM ≤m REGTM. We know ATM is unrecog-
nizable, so REGTM is also unrecognizable. This proves that REGTM is co-
unrecognizable.

	Recitation 04: Undecidability, Unrecognizability, and Reducibility
	Undecidability and unrecognizability
	Reducibility
	Problem solving strategies: undecidability and unrecognizability
	Example problems

