Recitation 04: TMs, T-recognizability, Decidability

In today’s recitation, we will gain more practice working with Turing Machines. First, we’ll review the TM variants that we saw in class this week. Then, we’ll work through a few examples for showing that a language is Turing-decidable. We will also learn about closure properties for Turing recognizable and decidable languages.

Turing Machine variants

We saw in class that there are several equivalent variants of Turing machines. We can use any of these equivalent formulations when proving that a language is Turing-recognizable.

Theorem 1. The following machines are all equivalent in computational power to single-tape, deterministic TMs.

1. Nondeterministic TMs (NTM)
2. Multi-tape TMs
3. Enumerators (i.e. a two-tape TM where the second tape is a printer)

Another way to formulate the above theorem is that the following four statements are equivalent (so there is an “if and only if” relationship between each pair of these statements):

1. Language B is Turing-recognizable.
2. $B = L(N)$ for some NTM N.
3. $B = L(M)$ for some multi-tape TM M.
4. $B = L(E)$ for some enumerator E.

There is a similar theorem for variants of Turing deciders.

Theorem 2. The following machines are all equivalent in computational power to single-tape, deterministic Turing deciders.

1. Nondeterministic Turing deciders.

To review the proofs that all of these are equivalent, see Section 3.2 of the textbook. Remember that an NTM accepts if at least one branch of its computation accepts.
2. Multi-tape Turing deciders.

3. Enumerators that enumerate strings in lexicographic order.

Let’s work through an example showing that TMs are also computationally equivalent to a “broken” TM where trying to move left would move the tape head all the way to the left.

Example 1. Let a left-reset TM be a TM, but when the transition function returns an L, the TM actually goes all the way to the left instead of moving left by one cell. Then left-reset TMs are equivalent to standard TMs.

Solution. We can prove that left-reset TMs are equivalent to standard TMs by showing that left-reset TMs can simulate standard TMs. Since the only difference in left-reset TMs is the moving left operation, it is enough to show that left-reset TMs can simulate moving left by one cell. There are two ways of showing this:

1. To move left by one cell, the left-reset TM shifts every symbol right by one. More specifically, the left-reset TM does the following to move left one cell:

 (a) Mark the current cell.
 (b) Move all the way to the left.
 (c) Shift every symbol on the tape right by one cell, taking care not actually shift the mark.
 (d) Move all the way to the left.
 (e) Go right until we reach the mark.

 Another detail to be careful about is how the left-reset TM knows where the tape symbols end. This can be resolved by keeping a mark at the rightmost cell ever visited.

2. To move left by one cell, the left-reset TM makes a mark on the current cell, and advances using another mark slowly to get to the cell before the first marked cell. More specifically, the left-reset TM does the following to move left one cell:

 (a) Mark the current cell with a •.
 (b) Go all the way to the left and mark the leftmost cell with a ★.
 (c) Repeat the following loop:
 i. Go to the left and scan right until finding the ★.
 ii. Move right one cell.
 iii. If the cell has a •, remove it and exit the loop. Otherwise, the ★ is not left of the original cell. Advance the ★ by one cell.
 (d) Go to the ★ and remove it. The left-reset TM should be on the cell one left of the original cell.
Hint for PSet 2 #6

This PSet problem is difficult and hard to think about, so we will go over a special case to help.

Proposition 1. Let

\[C = \{ \langle p \rangle \mid p \text{ is a multivariable polynomial where } p(x_1, x_2, \ldots, x_n) = 0 \text{ has an integer solution} \} \]

Then there is some decidable D such that \(C = \{ p \mid \exists y, \langle p, y \rangle \in D \} \).

Solution. First, note that \(C \) is Turing-recognizable because we can test all possible integer tuples to see if \(p \) has that tuple as a root.

In order to construct some decidable \(D \), the intuition is that we want \(y \) to be an extra piece of information that helps us decide if \(\langle p \rangle \in C \). The extra piece of information that will help us here is the integer root of \(p \). In particular, we have

\[D = \{ \langle p, (x_1, \ldots, x_n) \rangle \mid p \text{ is a polynomial, } x_1, \ldots, x_n \text{ are integers, and } p(x_1, \ldots, x_n) = 0 \} \]

We can see \(C = \{ p \mid \exists y, \langle p, y \rangle \in D \} \), and \(D \) is decidable.

T-recognizable and decidable languages

![Diagram of language hierarchy](image)

Turing machines are stronger than the other models of computation we have seen in class (such as finite automata or PDAs). In fact,
the Church-Turing thesis says that any real-world algorithm can be computed by a Turing machine.

To show that a language B is Turing-recognizable, we will want to construct a TM M that recognizes B. This means that M accepts every string in B, and either enters the reject state or loops forever on strings not in B.

To show that a language B is Turing-decidable, we will want to construct a TM M that decides B. This means that M accepts every string in B, and enters the reject state and halt on strings not in B. We will need to make sure that M always halts, and does not loop forever on any input.

Note that every Turing-decidable language is Turing-recognizable, since every Turing decider is a TM.

We have seen several examples of Turing decidable languages in class, listed in fig. 1. We can use the deciders for these languages as subroutines to prove that other languages are decidable. We will see this in the examples.

We have also seen one example of a language that is Turing recognizable but not decidable:

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$

There are also some languages such as EQ_{CFG} and \overline{A}_{TM} that are not T-recognizable. We will learn more about undecidable and unrecognizable languages next week.

Here are some example problems for proving a language is Turing-decidable.

Example 2. Show that

$$\{ \langle M, w \rangle \mid M \text{ is a TM such that } M \text{ on } w \text{ moves left at some point} \}$$

is decidable.

Solution. The idea is that we can build a decider that simulates M on w for some finite number of steps, checking to see if M ever moves left. The key observation is that if M only moves right for enough steps, the decider is sure that it M never move left.

We build the following decider:

<table>
<thead>
<tr>
<th>On input $\langle M, w \rangle$:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Simulate M on w for length(w) steps. If M ever moved left, then ACCEPT. Otherwise, we know that M is now at the blank portion of the tape.</td>
</tr>
<tr>
<td>2. Simulate M for $</td>
</tr>
</tbody>
</table>
know that M must have repeated a state, and only moves right while looking at blanks in between this state. Since the rest of the tape is blank, M will keep going to the right going through the same sequence of states. In particular, M will never move left, so we reject.

Example 3. Show that

$$\text{PAL}_{ \text{DFA} } = \{ \langle M \rangle \mid M \text{ is a DFA that accepts some palindrome} \}$$

is decidable.

Solution. We can construct a decider for $\text{PAL}_{ \text{DFA} }$:

On input $\langle M \rangle$:

1. Consider the CFG N recognizing palindromes. We can construct the CFG G that recognizes $L(M) \cap L(N)$. This is because $L(M)$ is regular, and $L(N)$ is context-free.

2. Since E_{CFG} is decidable, we can check whether $\langle G \rangle \in E_{\text{CFG}}$. This is exactly what we’re trying to decide, so we reject if $\langle G \rangle \in E_{\text{CFG}}$ and accept otherwise.

Closure properties for T-recognizable and T-decidable languages

Turing-decidable languages are closed under union, concatenation, star, intersection, and complement.

Turing-recognizable languages are closed under union, concatenation, star, and intersection. Here is a counterexample showing that T-recognizable languages are not closed under complement: A_{TM} is T-recognizable, but we will see later in class that $\overline{A_{\text{TM}}}$ is T-unrecognizable.

Theorem 3. Turing-decidable languages are closed under union, concatenation, star, intersection, and complement.

Proof. Suppose A and B are Turing-decidable languages. Then there exists a TM M_A that decides A and a TM M_B that decides B. Since M_A and M_B are deciders, they are guaranteed to halt on any input (either accepting or rejecting by halting).

Union. We construct a Turing decider M_{U} for $A \cup B$.

On input string w:

1. Run M_A on w.
2. Run M_B on w.
3. **Accept** if either \(M_A \) or \(M_B \) accepts. **Reject** if both reject.

Concatenation. We construct a Turing decider \(M_{\circ} \) for \(A \circ B \).

On input \(w \):
1. Nondeterministically guess where we split \(w \) into two strings: \(w = w_1w_2 \).
2. Run \(M_A \) on \(w_1 \).
3. Run \(M_B \) on \(w_2 \).
4. **Accept** if on some branch of the computation, both \(M_A \) and \(M_B \) accept. **Reject** otherwise.

Star. We construct a Turing decider \(M_* \) for \(A^* \).

On input \(w \):
1. Nondeterministically guess the number \(k \) of partitions. Then guess where we split \(w \) into \(k \) strings: \(w = w_1w_2 \ldots w_k \).
2. Sequentially run \(M_A \) on \(w_1, w_2, \ldots, w_k \).
3. **Accept** if on some branch of the computation, \(M_A \) accepts on all the strings. **Reject** otherwise.

Intersection. We construct a Turing decider \(M_\cap \) for \(A \cap B \).

On input string \(w \):
1. Run \(M_A \) on \(w \).
2. Run \(M_B \) on \(w \).
3. **Accept** if both \(M_A \) or \(M_B \) accept. **Reject** if either reject.

Complement. We construct a Turing decider \(M' \) for \(\overline{A} \).

On input string \(w \):
1. Run \(M_A \) on \(w \).
2. **Accept** if \(M_A \) rejects. **Reject** if \(M_A \) accepts.

The above algorithm for \(M' \) would not work if \(A \) were Turing-recognizable but not decidable, because \(M_A \) might reject by looping forever on \(w \). Then \(M' \) would not halt and accept \(w \), even though \(w \) is in \(\overline{A} \).

Theorem 4. Turing-recognizable languages are closed under union, concatenation, star, and intersection.
Proof. Suppose A and B are Turing-recognizable languages. Then there exists a TM M_A that recognizes A and a TM M_B that recognizes B. Since M_A and M_B are TMs, they can accept, reject by halting, or reject by looping.

Union. We construct a TM M_{\cup} that recognizes $A \cup B$. We need to slightly modify our proof for Turing-decidable languages. Since M_A or M_B might reject by looping forever, we have to run the two machines in parallel on the input (rather than sequentially).

<table>
<thead>
<tr>
<th>On input string w:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Run M_A and M_B on w in parallel.</td>
</tr>
<tr>
<td>2. Accept if either M_A or M_B accepts. Reject otherwise.</td>
</tr>
</tbody>
</table>

Concatenation. Same algorithm as the proof for Turing-decidable languages. We can run the machines sequentially as before. Note that if M_A or M_B (or both) reject by looping, then the new machine also rejects by looping (in that branch). This is okay because in any given branch, we want to reject if either machine rejects on its section of w.

Star. Same algorithm as the proof for Turing-decidable languages. We can run M_A sequentially on the strings w_1, w_2, \ldots, w_k as before. Note that if M_A rejects by looping on one of the strings w_i, then the new machine rejects the whole string $w = w_1w_2\ldots w_k$ by looping (in that branch). This is okay because in any given branch, we want to reject if M_A rejects any of w_1, w_2, \ldots, w_k.

Intersection. Same algorithm as the proof for Turing-decidable languages. Note that if M_A or M_B (or both) reject by looping, then our machine M_{\cap} would also reject by looping. This is okay because we want to reject if M_A or M_B rejects anyway.

The following table summarizes important closure properties for the classes of languages we have learned about.

<table>
<thead>
<tr>
<th>class</th>
<th>A^*</th>
<th>$A \circ B$</th>
<th>$A \cup B$</th>
<th>$A \cap B$</th>
<th>\overline{A}</th>
<th>$A \setminus B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>context-free</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no*</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>decidable</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>recognizable</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

†: yes if intersected with a regular language