
Recitation 03: CFLs, TMs, T-recognizability, Decidabil-
ity

In today’s recitation, we will review some things about CFLs and gain
more practice working with Turing Machines. First we will review clo-
sure properties for CFLs and do an example problem with the pump-
ing lemma for CFLs, then we’ll review the TM variants that we saw
in class this week and finally we’ll work through a few examples for
showing that a language is Turing-decidable. We will also learn about
closure properties for Turing recognizable and decidable languages.

Context Free Languages (CFLs)

We saw in class that a CFL is a language generated by a CFG (con-
text free grammar) or a language recognized by a PDA (push down
automata).

Theorem 1. (CFL Closure Properties) Let A and B be CFLs. Then A ∪ B,
A ◦ B and A∗ are CFLs (closure under ∪, ◦, and ∗).

Proof. Let A and B be recognized by PDAs PA and PB or generated by
grammars with start state GA and GB, respectively.

• For ∪, we can use the non-determinism of a PDA to guess which
language the input is from and run PA or PB on the input. Or using
CFGs, we can construct a grammar with an initial rule S → GA|GB.

• For ◦, we can non-deterministically guess where to split the string
and run PA on the first portion and PB on the second portion and
accept if both accept. Or using CFGs, construct a grammar with
S → GAGB.

• For ∗, we can non-deterministically guess where the string is split
up and run PA on each segment. Or using CFGs, make S → SGA|ε.

2

Note that CFLs are not closed under ∩ or complement, as you will
prove in Pset 2 problem 1b. One helpful fact, however, is that a CFL ∩
a regular language is still a CFL.

Next, lets look at an example problem of using the pumping lemma
for CFLs. First, recall the pumping lemma for CFLs.

Theorem 2. (Pumping Lemma for CFLs) If A is a CFL, then there exists a
pumping length p such that ∀s ∈ A where |s| ≥ p, then ∃u, v, x, y, z such
that s = uvxyz and

1. uvixyiz ∈ A ∀i ≥ 0

2. |vy| > 0

3. |vxy| ≤ p

Now lets apply it with a proof by contradiction.

Example 1. Show that A = {aibjck|i > j > k} is not a CFL.

Proof. Suppose that A is a CFL. Then the pumping lemma applies
and there exists a pumping length p. Take the string s = ap+2bp+1cp.
Clearly, s ∈ A and |s| = 3p + 3 ≥ p.

Since |vxy| ≤ p, vxy can only contain a’s and b’s or b’s and c’s. If
vxy is in the first portion of the string and contains a’s and b’s, then
observe that uv0xy0z = uxz /∈ A since we removed at least 1 a or at
least 1 b and there will now no longer be more a’s than b’s or b’s than
c’s. If instead vxy contains b’s and c’s, observe that uv2xy2z /∈ A since
we added at least 1 b or at least 1 c and there will now no longer be
more a’s than b’s or b’s than c’s.

These cases cover all possible assignments of uvxyz, so by way of
contradiction, A cannot be a CFL.

Turing Machine variants

We saw in class that there are several equivalent variants of Turing ma-
chines. We can use any of these equivalent formulations when proving
that a language is Turing-recognizable.

Theorem 3. The following machines are all equivalent in computational
power to single-tape, deterministic TMs. To review the proofs that all of these are

equivalent, see Section 3.2 of the text-
book.1. Nondeterministic TMs (NTM)
Remember that an NTM accepts if at
least one branch of its computation ac-
cepts.

2. Multi-tape TMs

3. Enumerators (i.e. a two-tape TM where the second tape is a printer)

Another way to formulate the above theorem is that the following
four statements are equivalent (so there is an “if and only if” relation-
ship between each pair of these statements):

3

1. Language B is Turing-recognizable.

2. B = L(N) for some NTM N.

3. B = L(M) for some multi-tape TM M.

4. B = L(E) for some enumerator E.

There is a similar theorem for variants of Turing deciders.

Theorem 4. The following machines are all equivalent in computational
power to single-tape, deterministic Turing deciders.

1. Nondeterministic Turing deciders. A nondeterministic Turing decider must
halt on every branch of its computation.
It accepts if at least one branch of its com-
putation accepts.

2. Multi-tape Turing deciders.

3. Enumerators that enumerate strings in lexicographic order. #3 is proved as problem 4 in pset 2(a lan-
guage is decidable if and only if there is
an enumerator that enumerates its lan-
guage in lexicographic order).

Example 2. Prove that there’s an enumerator E that generates a language if
and only if there’s a Turing machine M that recognizes. (A subset of theorem
1)

Solution. The standard way to solve this kind of problem is to use
each of the machines to construct the other. To construct M using E,
we have M run E. If at any point E outputs the input, M accepts. (M
rejects all strings not in the language by looping)

The main subtlety is in using M to construct an enumerator, this
requires two standard tricks:

1. Simulating multiple instances of M running on different input in
a single machine, by repeatedly running a step in each. (to avoid
getting stuck in one that never halts). This is similar to the proof that
none-deterministic machines can not recognize that deterministic
Turing machine can not recognize. But as a reminder it goes as
follows:

(a) Separate your tape into finite regions separated by #s so that
each machine gets a region. If a machine tries to read outside is
region while being simulated, we exit simulation and shift every-
thing to the right to grow it’s the region.

(b) Store the current state of the simulated machine at the begin-
ning of each region.

(c) Denoted where the simulated head is by putting a dot on it’s
position. Each region should have one and only one dot.

2. Doing the above, but adding a new thread simulating M on a new
word after each iterations on all the simulated words. So that every
machine gets an infinite number of steps. One any of the simulated
machines accepts, it’s string is printed.

4

Next, let’s work through an example showing that TMs are also
computationally equivalent to a “broken” TM where trying to move
left would move the tape head all the way to the left.

Example 3. Let a left-reset TM be a TM, but when the transition function
returns an L, the TM actually goes all the way to the left instead of moving
left by one cell. Then left-reset TMs are equivalent to standard TMs.

Solution. We can prove that left-reset TMs are equivalent to standard
TMs by showing that left-reset TMs can simulate standard TMs. Since
the only difference in left-reset TMs is the moving left operation, it is
enough to show that left-reset TMs can simulate moving left by one
cell. There are two ways of showing this:

1. To move left by one cell, the left-reset TM shifts every symbol right
by one. More specifically, the left-reset TM does the following to
move left one cell:

(a) Mark the current cell.

(b) Move all the way to the left.

(c) Shift every symbol on the tape right by one cell, taking care to
not actually shift the mark.

(d) Move all the way to the left.

(e) Go right until we reach the mark.

Another detail to be careful about is how the left-reset TM knows
where the tape symbols end. This can be resolved by keeping a
mark at the rightmost cell ever visited.

2. To move left by one cell, the left-reset TM makes a mark on the
current cell, and advances using another mark slowly to get to the
cell before the first marked cell. More specifically, the left-reset TM
does the following to move left one cell:

(a) Mark the current cell with a •.

(b) Go all the way to the left and mark the leftmost cell with a ⋆.

(c) Repeat the following loop:

i. Go to the left and scan right until finding the ⋆.

ii. Move right one cell.

iii. If the cell has a •, remove it and go back to the ⋆ and change
it to a • exit the loop. Otherwise, the ⋆ is not left of the original
cell. Advance the ⋆ by one cell.

(d) Go to the ⋆ and remove it. The left-reset TM should be on the
cell one left of the original cell.

5

Hint for PSet 2 #5

This PSet problem is difficult and hard to think about, so we will go
over a special case to help.

Proposition 1. Let

C = {⟨p⟩ | p is a multivariable polynomial where p(x1, x2, . . . , xn) = 0 has an integer solution}.

Then there is some decidable D such that C = {p | ∃y, ⟨p, y⟩ ∈ D}.

Solution. First, note that C is Turing-recognizable because we can test
all possible integer tuples to see if p has that tuple as a root.

In order to construct some decidable D, the intuition is that we want
y to be an extra piece of information that helps us decide if ⟨p⟩ ∈ C.
The extra piece of information that will help us here is the integer root
of p. In particular, we have

D = {⟨p, (x1, . . . , xn)⟩ | p is a polynomial, x1, . . . , xn are integers, and p(x1, . . . , xn) = 0}.

We can see C = {p | ∃y, ⟨p, y⟩ ∈ D}, and D is decidable.

T-recognizable and decidable languages

All languages
EQCFG ATM

Turing recognizable
ATM

Turing decidable
ADFA

ANFA

EDFA

EQDFA

ACFG

ECFG

{0k1k2k | k ≥ 0} {ww | w ∈ {0, 1}∗}

CFLs

Regular languages

Figure 1: Examples of Turing decidable
and Turing recognizable languages from
class.

Turing machines are stronger than the other models of computa-
tion we have seen in class (such as finite automata or PDAs). In fact,

6

the Church-Turing thesis says that any real-world algorithm can be
computed by a Turing machine. For a quick review of Turing machines

and the definitions of Turing recogniz-
able and Turing decidable, read Section
3.1 of the textbook.

To show that a language B is Turing-recognizable, we will want to
construct a TM M that recognizes B. This means that M accepts every
string in B, and either enters the reject state or loops forever on strings
not in B.

To show that a language B is Turing-decidable, we will want to
construct a TM M that decides B. This means that M accepts every
string in B, and enters the reject state and halt on strings not in B. We
will need to make sure that M always halts, and does not loop forever
on any input.

Note that every Turing-decidable language is Turing-recognizable,
since every Turing decider is a TM.

We have seen several examples of Turing decidable languages in
class, listed in fig. 1. We can use the deciders for these languages as
subroutines to prove that other languages are decidable. We will see
this in the examples. We have also seen one example of a language
that is Turing recognizable but not decidable:

ATM = {⟨M, w⟩ | M is a TM and M accepts w}.

There are also some languages such as EQCFG and ATM that are not
T-recognizable. We will learn more about undecidable and unrecog-
nizable languages next week.

Here are some example problems for proving a language is Turing-
decidable.

Example 4. Show that

{⟨M, w⟩ | M is a TM such that M on w moves left at some point}

is decidable.

Solution. The idea is that we can build a decider that simulates M on
w for some finite number of steps, checking to see if M ever moves
left. The key observation is that if M only moves right for enough
steps, the decider can be sure that M never moves left since once it
has read the input, M can only read blank tape symbols and must
end up looping. What is enough steps? Even if it read the entirety
of w, it could decide to move back to the left some finite number of
steps after. However, after a number of steps exceeding the size of it’s
control when it’s reading empty characters, it has surely hit a loop and
it will keep doing the same thing. We build the following decider:

On input ⟨M, w⟩:

1. Simulate M on w for length(w) steps. If M ever moved left,

7

then accept. Otherwise, we know that M is now at the blank
portion of the tape.

2. Simulate M for |QM| more steps, where |QM| is the number of
states in M. If M ever moved left, then accept. Otherwise, we
know that M must have repeated a state, and only moves right
while looking at blanks in between this state. Since the rest of
the tape is blank, M will keep going to the right going through
the same sequence of states. In particular, M will never move
left, so we reject.

Closure properties for T-recognizable and T-decidable languages

Turing-decidable languages are closed under union, concatenation,
star, intersection, and complement.

Turing-recognizable languages are closed under union, concatena-
tion, star, and intersection. Here is a counterexample showing that
T-recognizable languages are not closed under complement: ATM is T-
recognizable, but we will see later in class that ATM is T-unrecognizable.

Theorem 5. Turing-decidable languages are closed under union, concatena-
tion, star, intersection, and complement.

Proof. Suppose A and B are Turing-decidable languages. Then there
exists a TM MA that decides A and a TM MB that decides B. Since MA

and MB are deciders, they are guaranteed to halt on any input (either
accepting or rejecting by halting).

Union. We construct a Turing decider M∪ for A ∪ B.

On input string w:

1. Run MA on w.

2. Run MB on w.

3. Accept if either MA or MB accepts. Reject if both reject.

Concatenation. We construct a Turing decider M◦ for A ◦ B.

On input w:

1. Nondeterministically guess where we split w into two strings:
w = w1w2.

2. Run MA on w1.

3. Run MB on w2.

4. Accept if on some branch of the computation, both MA and

8

MB accept. Reject otherwise.

Star. We construct a Turing decider M∗ for A∗.

On input w:

1. Nondeterministically guess the number k of partitions. Then
guess where we split w into k strings: w = w1w2 . . . wk.

2. Sequentially run MA on w1, w2, . . . , wk.

3. Accept if on some branch of the computation, MA accepts on
all the strings. Reject otherwise.

Intersection. We construct a Turing decider M∩ for A ∩ B.

On input string w:

1. Run MA on w.

2. Run MB on w.

3. Accept if both MA or MB accept. Reject if either reject.

Complement. We construct a Turing decider M′ for A.

On input string w:

1. Run MA on w.

2. Accept if MA rejects. Reject if MA accepts.

The above algorithm for M′ would not work if A were Turing-recognizable
but not decidable, because MA might reject by looping forever on w.
Then M′ would not halt and accept w, even though w is in A.

Theorem 6. Turing-recognizable languages are closed under union, concate-
nation, star, and intersection.

Proof. Suppose A and B are Turing-recognizable languages. Then
there exists a TM MA that recognizes A and a TM MB that recognizes
B. Since MA and MB are TMs, they can accept, reject by halting, or
reject by looping.

Union. We construct a TM M∪ that recognizes A ∪ B. We need to
slightly modify our proof for Turing-decidable languages. Since MA or
MB might reject by looping forever, we have to run the two machines
in parallel on the input (rather than sequentially).

9

On input string w:

1. Run MA and MB on w in parallel.

2. Accept if either MA or MB accepts. Reject otherwise.

Concatenation. Same algorithm as the proof for Turing-decidable
languages. We can run the machines sequentially as before. Note that
if MA or MB (or both) reject by looping, then the new machine also
rejects by looping (in that branch). This is okay because in any given
branch, we want to reject if either machine rejects on its section of w.

Star. Same algorithm as the proof for Turing-decidable languages.
We can run MA sequentially on the strings w1, w2, . . . wk as before.
Note that if MA rejects by looping on one of the strings wi, then the
new machine rejects the whole string w = w1w2 . . . wk by looping (in
that branch). This is okay because in any given branch, we want to
reject if MA rejects any of w1, w2, . . ., wk.

Intersection. Same algorithm as the proof for Turing-decidable lan-
guages. Note that if MA or MB (or both) reject by looping, then our
machine M∩ would also reject by looping. This is okay because we
want to reject if MA or MB rejects anyway.

The following table summarizes important closure properties for
the classes of languages we have learned about.

class A∗ A ◦ B A ∪ B A ∩ B A A \ B

regular yes yes yes yes yes yes
context-free yes yes yes no† no no

decidable yes yes yes yes yes yes
recognizable yes yes yes yes no no

†: yes if intersected with a regular language

	Recitation 03: CFLs, TMs, T-recognizability, Decidability
	Context Free Languages (CFLs)
	Turing Machine variants
	Hint for PSet 2 #5
	T-recognizable and decidable languages
	Closure properties for T-recognizable and T-decidable languages

