
18.404/6.5400 Recitation 2

1 Nondeterministic Finite Automata (NFA)

A nondeterministic finite automaton is an extension of the deterministic finite automata
covered in the first week. The key difference is the nondeterminism, which allows the NFA
to exist in multiple states at a single time. If, at the end of a string, any of the states the
NFA is on is an accepting state, the NFA will accept the input string. Only if none of the
states the NFA is on is an accepting state will the NFA reject. Note that DFAs and NFAs
are equivalent in power (a language is recognized by some DFA if and only if the language
is recognized by an NFA).

2 More Closure Properties

As defined in class, a language is regular if and only if it can be recognized by some finite
automata. Because DFAs are more simple to work with, when proving most closure proper-
ties, we usually start with a DFA, and then create an NFA that satisfies the closure property
we are trying to prove.

Exercise. Show that regular languages are closed under reversal. Reversal of a language
A is defined as

AR = {wR|w ∈ A}.

Proof. Let A be a regular language. Then there exists some DFA M such that L(M) = A.
We want to construct NFA N that recognizes the reverse of A. At a high-level, this NFA
should traverse M backwards, and that requires two steps.

Because we want to accept the reverse of language A, a first step would be to have N ’s
accept state be M ’s start state, and N ’s start state be M ’s accept states. This doesn’t work
immediately, as we can only have 1 start state, but M could have no or multiple accept
states. We fix this by adding an extra state q0 to be the start state of N , and then adding
ϵ-transitions from q0 to the original accept states of M . Another way to think of this is that
since we are looking at strings in reverse order, M could accept a string from any of the
accept states, so we want to start at all of them, which we can achieve through ϵ-transitions.

We are not done though! To make sure we can truly work backwards, we need to reverse
all the transitions of M by reversing the direction of all the arrows of M . Note that if we
had multiple arrows going into a state q in our DFA M , we’ll have multiple arrows going
out of q in our NFA N . But that’s OK through the power of nondeterminism! NFAs allow
one state to transition to a set of states, not just one other unique state. For example, if q1
and q2 both transition to q3 when reading a 0 in M , then q3 will transition to a set of states
including q1 and q2 when reading a 0. Thus, we’ve constructed an NFA N , which accepts
AR.

Exercise. Show that regular languages are closed under intersection.

Proof. Let A and B be regular languages. We want to show that A∩B must also be regular.
To do so, we rely on De Morgan’s law, which states that A ∪B = A ∩ B. We will work
backwards to get A∩B from A and B. By closure under complement, we know that A and

B are regular. Furthermore, A ∪ B and A ∪B are both regular the application of closure
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under union then closure under complement. Applying De Morgan’s law, A ∪B = A ∩ B.
Therefore A ∩B is regular.

3 Nonregularity

We’ve been working with proving that languages are regular - to do this, we need to construct
a finite automata that recognizes a given language. Next, we’ll practice techniques to show
that languages are nonregular, meaning that no finite automata will recognize the language.
This is where the pumping lemma and closure techniques come in handy.

3.1 Pumping Lemma

Formally, the pumping lemma states the following.

Lemma. If A is a regular language, then there exists a number p (the pumping length)
where, for any string s ∈ A of length at least p, s may be divided into three pieces, s = xyz,
satisfying the following conditions:

• for every whole number i (including 0), xyiz ∈ A,

• |y| > 0, and

• |xy| ≤ p.

The intuition for the pumping lemma is that, because our automata are finite, if a
string is accepted by an automata but has more characters than the number of states of the
automata, some state must have been repeated at least once. This means that in accepting
the string, the automata must have gone through some loop. Repeating this loop multiple
times or just deleting the loop entirely would still result in an accepted string, so the loop
can be thought of as an analogue for y in the pumping lemma.

The pumping length p can be thought of roughly as the number of states in a DFA that
recognizes a given language (this is not exact, and since each language can be accepted by
many DFAs all with different number of states, it’s difficult to actually give a value of p for
a language). Any string with length greater than p has a loop in it, so it can be pumped by
repeating or deleting the loop.

In general when using the pumping lemma, we use it as a proof of contradiction. We
assume a language is regular, then try to come up with an example string s such that
when we repeat or delete y, we wind up with a string not in the language. Below are two
proofs of nonregularity using the pumping lemma. The first is explained more in-depth for
understanding, and the second is an example of an acceptable write-up on an exam/pset.

Exercise. Show that the language B = {0n1m0n |n,m ≥ 0} is not regular.

Proof. For the sake of contradiction, we assume B is regular. By the pumping lemma, B
has a pumping length p. Our high-level strategy is to choose s such that |s| ≥ p and when
we pump s, we get a string not in B.

Specifically, one key restriction of this language is that the string of zeros at the beginning
must be the same length as the string of zeros at the end. So, if we can ensure that y is
fully within the string of zeros at the beginning and pump it, our output string will have
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the string of zeros at the beginning be longer than the string of zeros at the end, satisfying
our contradiction.

To this end, we choose s = 0p10p. By the conditions of the pumping lemma, and because
|s| = 2p+ 1 ≥ p, for every splitting s = xyz,

x = 0a, y = 0b, z = 0c10p.

By the pumping lemma, we also know that b > 0. Now, when we pump s by repeating y
twice, we get

xy2z = 0a+2b+c10p = 0p+b10p /∈ B,

contradicting B being a regular language.

Exercise. Show that the language C = {0i1j | i ≥ j} is not regular.

Proof. Assume for the sake of contradiction that C is regular, and let p be the pumping
length of C. Choose s = 0p1p. Because |s| = 2p > p, apply the pumping lemma to s. Then,
for every partition s = xyz,

x = 0a, y = 0b, z = 0c1p, b > 0.

By repeating y 0 times, we get s′ = xz = 0a+c1p. By the pumping lemma, s′ should be in
C, but a + c < p (as b is greater than 0). Thus, C does not satisfy the pumping lemma,
implying that it is not regular.

3.2 Using Closure Properties for Nonregularity

Some languages are irregular, but at first glance, it seems difficult to use the pumping lemma
to prove nonregularity. In these cases, we can assume the language is regular, use one (or
more) of the closure properties with a regular language to produce an irregular language,
showing by contradiction that the language is irregular.

Exercise. Show that the language D = {0i1j | i ̸= j} is irregular.

Proof. Although it is possible to show that this language is irregular using just the pumping
lemma, it involves a lot of work, so we will do it using closure properties instead.

Before we begin, we first show that regular languages are closed under difference; if A
and B are regular languages, the language consisting of strings that are in A but not in B
is a regular language. This is because A set minus B is equivalent to A intersected with the
complement of B (in math notation, A \B = A ∩ B̄). As shown in class, regular languages
are closed under both intersection and complement, so regular languages are closed under
difference as well.

For the sake of contradiction, assume D is a regular language. We want to show that,
using closure properties with a language we can prove is regular, we get a language that is
irregular. Let E = 0∗1∗, which is a regular language. By closure under difference, E \D =
{0i1i | i ≥ 0}. However, as proved in lecture, {0i1i | i ≥ 0} is not regular, contradicting our
assumption that D is regular.
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4 Summary

4.1 Closure Properties of Regular Languages

Consider two regular languages A and B. So far, we have shown that all of the following
languages must also be regular by closure properties:

• A ∪B (closure under union)

• AB (closure under concatenation)

• A∗ (closure under star)

• A (closure under complement - proved on pset)

• AR (closure under reversal)

• A ∩B (closure under intersection)

4.2 Proving Regularity and Nonregularity

These lists are not exhaustive, but they can provide a guideline for you as you approach the
problem sets. Given a language A, we can prove A is regular by:

1. Constructing a DFA or NFA recognizing A.

2. Providing a regular expression for A (e.g. A = B ∪ C where B and C are regular).

3. Proving A or AR is regular.

Note: it’s not necessarily true that if A ∪ B is regular and B is regular then A is regu-
lar. Consider the case when A = {0n1n|n ≥ 0} and B = Σ∗. We know B is regular and
A ∪B = Σ∗ is regular, but we have proven that A is not regular. We can apply the closure

properties in 3. to prove nonregularity because they are reflective (A = A and (AR)R = A).

Given a language A, we can prove A is not regular by:

1. Directly applying the pumping lemma.

2. Applying some closure properties to A to get a new language A′ (which is also regular),
then applying the pumping lemma to A′.
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