
Recitation 02: NFAs, Pumping Lemma

In this recitation, we’ll continue our discussion of regular languages.
We’ll introduce NFAs (nondeterministic finite automata) as an equiv-
alent model of computation to DFAs (deterministic finite automata).
Next, we’ll practice techniques for showing that languages are not reg-
ular. That means, for a given language A, we have to show that no
finite automaton M recognizes A. This seems harder than proving a
language is regular, where we only have to construct some FA recog-
nizing A. This is where the pumping lemma and closure properties of
regular languages come in handy.

Nondeterministic Finite Automata

Definition 1 A nondeterministic finite automaton is a 5-tuple (Q, Σ, δ, q0, F),
where Σϵ = Σ ∪ {ϵ}. This means that an

NFA can have ϵ-arrows in its transition
function moving from one state to
another without reading any input.

1. Q is a finite set of states,

2. Σ is a finite alphabet,

The range of δ is P(Q), the power
set of Q. This means that, for a given
state/symbol pair (q, a), an NFA will
nondeterministically transition to the set
of states δ(q, a) ∈ P(Q), resulting in
branches of computation running in-
parallel.

3. δ : Qϵ × Σϵ → P(Q) is the transition function,

4. q0 ∈ Q, is the start state, and

5. F ⊆ Q is the set of accept states.

If a branch of computation encounters
the scenario δ(q, a) = ∅ (i.e. there are no
transition arrows for input a on a given
state q), then it simply dies.

NFAs are similar to DFAs, except that NFAs are allowed to have ϵ

transitions and multiple transitions for a given symbol. This means
that an NFA can have multiple branches of computation running in
parallel for the same input, and if and only if any of them accept, the
NFA accepts. With that, let’s do a practice example.

Example 1 Show that regular languages are closed under reversal. Reversal
of a language A is defined as follows:

AR = {wR | w ∈ A}

Solution 1 Let A be a regular language. Then L(M) = A for some DFA
M. The idea is to construct an NFA N that recognizes AR. A natural first

2

step is to reverse the direction of arrows of M. Using this approach, note that
if we had multiple arrows going into a state q in the original DFA M, we’ll
have multiple arrows going out of q in the NFA N. But that’s OK, as we’re
building an NFA. For example, if δM(q1, a) = δM(q2, a) = q, we would now
have q1, q2 ∈ δN(q, a).

The next step would be to make M’s accept states become start states, and
vice versa. This doesn’t work immediately, as M could have no or multiple
accept states, but an FA should have exactly one start state. We fix this by
adding an extra state q0 to be the start state of N. We then add ϵ-transitions
from q0 to all the states that were accept states in M. Another way to think
about this is that, since we’re looking at a string w in reverse order, we’re
guessing which accept state M uses to accept w and go backwards from there.

Pumping Lemma

The pumping lemma is most directly a property that all regular lan-
guages have, which informally states that “regular languages can be
pumped.” However, we mostly use it in the contrapositive sense to
prove a language is not regular by showing that it cannot be pumped.

Lemma 1 If A is a regular language, then there exists a number p (the
pumping length) where, for any string s ∈ A of length at least p, then s may
be divided into three pieces, s = xyz, satisfying the following conditions: To proceed with a proof by contradic-

tion, we have to find some string s where
s ∈ A and |s| ≥ p such that for ev-
ery partition s = xyz, at least one of the
three conditions above is violated.

1. for each i ≥ 0, xyiz ∈ A,

2. |y| > 0, and

3. |xy| ≤ p

Example 2 Show that A1 = {0n1m0n} for non-negative integers n, m is
non-regular.

One strategy is to incorporate the pump-
ing length p into string s so that y, which
is within the first p symbols, is forced to
be under some condition, e.g. y has to
be all 0’s.

Solution 2 Assume for contradiction that A1 is regular. Then A1 must have
a pumping length p. Consider the string s = 0p10p. Note that s ∈ A1 and
|s| = 2p + 1 ≥ p. Consider any partition s = xyz that satisfies the three
conditions of the pumping lemma. By condition 3, we must have |xy| ≤ p.
This implies that y is all 0’s. As |y| > 0 by condition 2, if we pump up (i.e.
use condition 1 with i > 1), then xyiz will have more 0’s than 1’s and can’t
be in A1, contradiction.

Example 3 Show that A2 = {0n1m | n ≥ m} is non-regular.
Example 3 illustrates that pumping
down is also a valid strategy for a proof
by contradiction.

Solution 3 Assume for contradiction that A2 is regular. Then A2 must have
a pumping length p. Consider the string s = 1p0p. Note that s ∈ A2 and

3

|s| = 2p ≥ p. Consider any partition s = xyz that satisfies the three condi-
tions of the pumping lemma. By condition 3, we must have |xy| ≤ p. This
implies that y is all 1’s. As |y| > 0 by condition 2, if we pump down (i.e. use
condition 1 with i = 0), then xyiz will have more 0’s than 1’s and can’t be in
A2, contradiction.

Closure under Intersection

We can also use closure properties of regular languages to show a lan-
guage cannot be regular. Recall that the class of regular languages
is closed under the regular operations (union, star, concatenation), as
well as intersection, reversal (this recitation), and complement (Prob-
lem 0.1 on the first Problem Set).

Example 4 Show that B = {ambn | m ̸= n} is non-regular.

Solution 4 Using the pumping lemma to directly prove B is not regular is
quite difficult, though it can be done. Instead, the strategy we’ll use is the
following: we assume B is a regular language; then we mold B using oper-
ations that regular languages are closed under into a non-regular language
C, which we can more easily prove is non-regular using the pumping lemma;
and finally we reach a contradiction because if B were regular, we’ve only
used operations that the class of regular languages are closed under, so the
final resulting language C must have been regular.

Assume for contradiction that B is regular. Then the complement of B,
which we denote Bc, must also be regular. Note that Bc consists of all strings
of the form ambn where m = n as well as all strings of a’s and b’s that don’t
fit in the form ambn (e.g. abba). This means that if we intersect Bc with the
language D = {ambn | any value of m, n}, we get C = {ambm}. Note that
D is a regular language, as a simple DFA/NFA can recognize strings of the
form ambn. Then we can write C = Bc ∩ D. The right hand side must be
regular since we’ve taken regular languages and applied operations that the
class of regular languages are closed under. However, we know that C is not
regular (this is a simple pumping lemma exercise), which is a contradiction.

	Recitation 02: NFAs, Pumping Lemma
	Nondeterministic Finite Automata
	Pumping Lemma
	Closure under Intersection

