
Recitation 01: Finite Automata, Regular Languages

In this recitation, we will review finite automata and see several ex-
amples of how to construct them to recognize specific languages. We
will also review regular languages and regular operations, concluding
with two methods of proving that all finite languages are regular.

Logistics

Recitations will primarily be for going over lecture material in more
detail and working through exercises, as opposed to teaching supple-
mental material. They are recommended if you find yourself strug-
gling with the course content. Attendance is not mandatory, but TAs
will make note of active participation, which may be taken into ac-
count if you end up near a grade boundary.

The primary content of each recitation is the same; you do not need
to attend multiple (and you will not get double the participation score).
You are encouraged to attend the same recitation consistently so that
TAs can learn your name, though you are free to switch at any point.
Make sure to sign in at each recitation so that your attendance can be
counted.

Recitation notes will be published shortly after each recitation; they
may differ slightly from the content of your recitation due to variations
in different instructor sections.

Finite Automata

A finite automaton is a model of computation consisting of finitely many
states and transitions. In particular, the states include exactly one We’ll see several models of computa-

tion throughout the course; finite au-
tomata are among the simplest because
the number of states is finite.

start state and zero or more accept states. The strings inputted into
a finite automaton consist of symbols from a specified alphabet, often
{0, 1}. The formal definition of a deterministic finite automaton (or DFA),
expressed as a 5-tuple (Q, Σ, δ, q0, F), was described in Lecture 1. To review the formal definition of a fi-

nite automaton, see Definition 1.5 in the
textbook.

The language of a finite automaton is the set of all strings that it
accepts. Formally, a DFA M = (Q, Σ, δ, q0, F) accepts a string w =



2

w1w2 · · ·wn, where wi ∈ Σ, if ∃ r0, r1, ..., rn ∈ Q (there exists a series of
states) such that

1. r0 = q0 (the initial state is the starting state)

2. ri = δ(ri−1, wi) for all i = 1, ..., n (the transitions are valid)

3. rn ∈ F (the final state is an accept state).

Exercise 1. Construct a DFA that recognizes each of the following languages,
where the alphabet is Σ = {0, 1}:

1. Σ∗ Remember that Σ∗ is the set of all strings
consisting of zero or more 0s and 1s.

2. ∅

3. {ε}

Solution. We construct DFAs for each of the three languages.

1. Σ∗ The only state is both the start state and
the only accept state. This means that
any string that enters the DFA will be
accepted!

q0start

0, 1

2. ∅ A small modification from the above:
now no strings should be accepted, so
we simply remove the accept state. Note:
any valid DFA with no accept states
would also work.

q0start

0, 1

3. {ε} The start state is an accept state. All
strings consisting of at least one 0 or 1
will lead us to q1 and never return to q0,
so they will be rejected. Note: any DFA
accepting the empty string must have
the start state be an accept state.q0start q1

0, 1

0, 1

Exercise 2. Construct a DFA that recognizes each of the following languages
with the given Σ:

1. Σ = {0, 1, ..., 9}, A18404 = {18404}.

2. Σ = {a, b}, Aeven = {w |w has an even number of a’s}.

Solution. We construct DFAs for each of the two languages.

1. {18404}



3

q0start q1 q2 q3 q4 q5
1 8 4 0 4

qd

An arrow with no label implies that
all alphabet members not included in
any other transition from that state will
follow this arrow. For example, from
δ(q2, n) = qd for all n ̸= 4.

Here, qd represents the “dead state.” Once we land in this state, we
will never leave, so the input will not be accepted. When construct-
ing DFAs, making a dead state is useful when we want to never
accept if a certain condition occurs (or fails to occur). Note that q1 in Exercise 1.3 is also a dead

state!

2. {w |w has an even number of a’s} Being in qeven represents that we have
read in an even number of a’s; being in
qodd represents that we have read in an
odd number of a’s.

qevenstart qodd

b

a
b

a

When constructing DFAs, it’s useful to think of each state as a pos-
sibility for the value that the machine cares about. For example, in
Exercise 2.2 above, the value that the machine cares about is whether
there is an even or odd number of a’s so far: in other words, the parity
of the number of a’s. Since there are two possible parities, we have two
states.

Exercise 3. With Σ = {1} (unary strings), construct a DFA that recognizes
A3 = {w |w has length a multiple of 3}. Then, by generalizing this idea,
provide a formal definition of a DFA recognizing An = {w |w has length a
multiple of n}.

Hint. What is the value that the machine needs to keep track of?
How many possibilities are there for that value?

Solution. We know that the DFA should keep track of a value related
to the length of the input; however, we don’t care about the actual
length as much as whether it is divisible by 3. Thus, we create three
states to represent the length modulo 3 of the input so far. “Length modulo 3” is the remainder

when we divide the length by 3.

We start at q0, representing that the cur-
rent length is 0 mod 3. Note that this
is also the accept state, since we want to
accept strings with length 0 mod 3. On
the next 1, the length becomes 1 mod 3,
then 2 mod 3, then back to 0 mod 3, etc.



4

q0start

q1

q2

1 1

1

For arbitrary n, we want a cycle like the above, but consisting of n
states, representing the length being 0, 1, ..., n − 1 modulo n. We want
each state to transition to the next in the cycle, and the starting state
(corresponding to 0 mod n) to be the accept state. M = (Q, Σ, δ, q0, F)
recognizes An, where

Q = {q0, ..., qn−1}
Σ = {1}

δ(qi, 1) =

q0 i = n − 1

qi+1 else

q0 = q0

F = {q0}
As there is only one symbol, 1, in the al-
phabet, we only need to define the tran-
sition function δ for that symbol.

Regular Languages

A regular language is any set of strings that is recognized by some finite
automaton.

Let L1 = {a, b}, L2 = {b, c}. In Lecture 1, we defined the following
regular operations:

• Union (∪)

Example: L1 ∪ L2 = {a, b, c}.

• Concatenation (◦)

Example: L1 ◦ L2 = L1L2 = {ab, ac, bb, bc}.

• Star (∗)

Examples: ∅∗ = {ε}, L∗
1 = {ε, a, b, aa, ab, ba, bb, aaa, aab, ...}.

Theorem 1. Every finite language is regular.

Proof 1 (construction). Let L = {w1, w2, ..., wn} be a finite language. De-
fine k to be the maximum length of a string in L, or k = max1≤i≤n |wi|.
Construct a tree of depth k + 1, where each state splits into two new
states (one for 0 and one for 1). See the example below for concrete-
ness. Note that there is now a unique path for every string of length k.

Note that an infinite language would
have arbitrarily long strings, so it would
not be possible to find k. This construc-
tion only applies for finite languages.



5

For each wi ∈ L, add an accept state corresponding to the state
reached after processing wi. This ensures that strings lead to an accept
state if and only if the string is a member of L. Thus, this construction
recognizes L, which shows that L is regular.

For example, the following is the DFA for L = {0, 10, 000, 001} using
this construction. In addition, there is an dead state from

which states q7, ..., q14 lead to on any in-
put, since we don’t want to accept any
strings of length longer than 3. We
haven’t drawn the dead state or its as-
sociated transitions to simplify the dia-
gram.

q0start

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Proof 2 (closure under union). Again let L = {w1, w2, ..., wn} be a finite
language. Let Li := {wi} for i = 1, ..., n. For each i, we can construct
a DFA that recognizes Li in the same manner as Exercise 2.1 (A18404).
Thus, Li is a regular language. In Lecture 1, we showed that regular
languages are closed under union. We know that L = L1 ∪ L2 ∪ · · · ∪
Ln, so L is also regular.

Note that closure under union does not
hold for an infinite number of languages,
so this proof also only works for finite
languages.


	Recitation 01: Finite Automata, Regular Languages
	Logistics
	Finite Automata
	Regular Languages


