18.404 Review Session
8–8:30 — Language classes (Jason)
8:30–9 — Mapping reduction, computation history (Jocelin)
9–9:30 — Pumping lemma, decidability (Jett)

How to prove things are regular, aren’t they regular, CFLs, decidable, recognizable?

Proving things are regular:
- Construct DFA/NFA
- Write a regular expression
- Closure properties
- Split into easier problems

Closure example: Show \(L = \{ a^m b^n \mid m, n \geq 0 \text{ and even length} \} \) is regular.

We can write \(L = \underbrace{\{(a^n b^n)\}}_{\text{reg}} \cap \underbrace{\{(\text{even length})\}}_{\text{reg}} \)

Since both parts are regular, \(L \) is regular.

Proving things aren’t regular:
- Pumping lemma
 - Proof by contradiction
 Assume language is regular
 Show some string violates pumping lemma

 \[L = \{ a^m b^n \mid n \geq 0 \} \]
 Assume \(L \) is regular
 \[s = a^p b^q = a a a \ldots a b b b \ldots b \]
 Assume \(L \) is regular
 Then \(L \cap \{(a^n b^m)^3\} \) is also regular
 \[\underbrace{\{(a^n b^m)^3\}}_{\text{reg}} \]
 \[\Rightarrow \underbrace{\{(a^n b^m)^3\}}_{\text{reg}} \] is also regular
 \[\text{Contradiction!} \]
Proving things are **CFLs**
- Construct PDA (description is fine)
 \[\{a^n b^n \mid n \geq 0\} \]
 - on \(w\),
 - read 'a's and push them onto stack until none left
 - read 'b's and pop 'a's off stack
 - accept if stack is empty
 - reject otherwise
- Write grammar
 \[\{a^n b^n \mid n \geq 0\} \quad S \rightarrow aSb \mid \epsilon \]
 - \(\text{CFL} \cap \text{REG} = \text{CFL}\)
- Closure properties
 - \(\text{CFL} \cap \text{CFL} = \text{not a CFL}\)

Proving things aren't **CFL**
- Context-free pumping lemma (example later)
- Closure properties (via contradiction)

Proving things are **decidable**
- Construct a decider TM, prove it always halts. (example later)
- We can use problems that we know are decidable
 - \(A_{DFA}, E_{DFA}, EQ_{DFA}, ACFG, ECFG\)

Proving things aren't **decidable**
- General reduction (example later)
 - Proof by contradiction
 - Assume decider exists
 - Use it to construct a decider for \(A_{TM}\)
 - (or another undecidable language)
 - Computation history (example later)

Proving things are **recognizable**
- Construct TM recognizing the language
 - Prove it halts for \(x \in L\)
 - (no requirement for \(x \notin L\))

Proving things aren't **recognizable**
- Mapping reduction \(A_{TM} \leq L\)
 - (equivalently, \(A_{TM} \leq \overline{L}\))
Mapping Reducibility

Show that if A is T-recog & $A \leq_m \overline{A}$, then A is decidable.

Prf: $A \leq_m \overline{A} \implies \overline{A} \leq_m A$

Since A is T-recog, then \overline{A} must also be T-recog.

If A and \overline{A} are both T-recog, then A is decidable.

Prf: Construct a decider D for A. Say M_1 recog A & M_2 recog \overline{A}.

D: On $\langle x \rangle$:

- Run M_1 and M_2 on x in parallel.
- If $x \in A$:
 - Then M_1 will eventually acc. x.
 - $\implies D$ accs.
- If $x \notin A$:
 - Then M_2 will eventually acc. x.
 - $\implies D$ rej.
Define an erase \(TM \) to be a \(TM \) that can erase and read on input tape, but can't write other symbols on tape, replacing with blank.

Show \(E_{\text{erased}TM} \) is undecidable.

\[
E_{\text{erased}TM} = \{ M \mid M \text{ is erase } TM, L(M) = \emptyset \}
\]

Proof: Reduce from \(\text{ATM} \).

Idea: Construct erase \(TM \) \(E \) that accepts accepting comp. hists. for \(M \) on \(w \).

Problem: Can only erase, not write w/ special chars.

Take in comp. history \(x_2 \) as input.
Tape:

```
# q_0 w_1 ... w_k # # ... # q_{acc} #
```

```
# q_0' w_1' ... w_k' # # ... # q_{acc}'#
```

1. Check first config c_0 is a valid start w/ q_0, w.
2. Check final config c_n' valid w/ q_{acc}.
3. Check valid transitions from c_i to c_{i+1}.
 a. Erase chars in c_0' (go after \ast, erase until next #)
 b. Check c_0 to c_i' (first nonblanks after \ast until next hash)
 c. As you check character-by-character zigzagging from 1st copy to corresponding char on 2nd copy, delete the characters you just checked.

→ so you can find next corresponding chars in configs.

*note: technically details around checking
around head location q_k, such as checking its adj. symbols, to see if valid state transition

d. Continue: check c_i to c_{i+1}' character-by-character erasing the character you just checked.

e. Done when everything after $\#$ is erased.

Decider for A_{TM}
On $\langle M, w \rangle$:
1. Construct ERASE TM $E_{M,w}$ as detailed above.
2. Use decider to see if $L(E_{M,w}) = \emptyset$.
3. If decider accs, we rej. rej we acc.
* Remark: This is also valid mapping reduction from \(\overline{A_{TM}} \) to \(E_{eraseTM} \):

\[
\begin{align*}
\langle M, w \rangle & \quad f \quad \text{eraseTM} \\
M \text{ doesn't acc. } w & \quad \emptyset \\
\langle M, w \rangle & \quad f \quad \text{eraseTM} \\
M \text{ acc. } w & \quad \text{lang. nonempty}
\end{align*}
\]

So \(\overline{A_{TM}} \leq_m E_{eraseTM} \Rightarrow E_{eraseTM} \text{ T-unrecog.} \)
2.48 (book) Let C_1 be the language of all strings that contain a 1 in their middle third.

$\Sigma = \{0, 1\}$

$C_1 = \{abc \mid a, c \in \Sigma^*; b \in \Sigma^*1\Sigma^*; |d| = |c| \geq |b|\}$

a. Show C_1 is a CFL.

\[
S \rightarrow ATA \\
T \rightarrow ATAA \mid AATA \mid ATA \mid 1 \\
A \rightarrow \Sigma
\]
\[C_2 = \{abc \mid a, c \in \Sigma^* \mid b \in \Sigma^1 \Sigma^{1*1} \Sigma^* \mid \text{il} = 1c \geq 1b \} \]

b. Show \(C_2 \) is not a CFL.

Assume \(C_2 \) is a CFL.
Then it has a pumping length \(p \).
Consider the string \(S = 0^p10^{p-2}10^p \).

Regardless of how \(u \), \(v \), \(x \), \(y \), and \(z \) is chosen,
the pumping lemma conditions cannot be satisfied.

2 cases:
- \(v \) and \(y \) contain only zeros.
\[S = 0000000000100000000000000 \]
 - no matter where \(u \) and \(y \) are,
pumping them will move the 1s out of the middle.
- \(u \) or \(y \) contains a 1.
 - pump down, getting rid of the 1.
4.27 (book:) Let $E = \{ \langle M \rangle \mid M$ is a DFA which accepts some string w with more 1s than 0s $\}$.

Show E is decidable.

Key pts: - Construct a TM
 - $\{ \langle M \rangle \mid w \text{ contains more 1s than 0s} \}$ is a CFL.
 - $\text{CFL} \cap \text{reg} = \text{CFL}$

"on input $\langle M \rangle$:
 - Let A be $\{ w \mid w \text{ contains more 1s than 0s} \}$.
 - Construct a CFG generating $L(M) \cap A$, B.
 - Feed B into E_{CFG} decider.
 - If it accepts, reject. If it rejects, accept."