Read all of Chapters 3 and 4.

0.1 Read and solve, but do not turn in: Book, 2.16. [CFLs closed under \cup, \circ, \ast]
Solve by using both CFGs and PDAs.

0.2 Read and solve, but do not turn in: Book, 2.18. [(CFL \cap regular) is a CFL]
Note, problems marked with A have solutions in the book.

0.3 Read and solve, but do not turn in: Book, 2.26. [Chomsky normal form]

0.4 Read and solve, but do not turn in: Book, 2.30c. [CFL Pumping lemma]

1. Let $C = \{zu| z \in 0^* \text{ and } u \in 0^*10^* \text{ where } |u| = |z|\}$. Show that C is a CFL in two ways:
 (a) by giving a CFG that generates C, and
 (b) by giving a PDA that recognizes C.

2. Let $D = \{tz| z \in 0^* \text{ and } t \in 0^*10^*10^* \text{ where } |t| = |z|\}$.
 (a) Show that D is not a CFL.
 (b) Is $D \cup (\sum\sum)^* \text{ a CFL? Why or why not?}$
 (c) Is $D \cup \sum(\sum\sum)^* \text{ a CFL? Why or why not?}$

3. Say that a variable A in CFG G is usable if it appears in some derivation of some string $w \in L(G)$. Given a CFG G and a variable A, consider the problem of testing whether A is usable. Formulate this problem as a language and show that it is decidable.

4. Let a k-PDA be a pushdown automaton that has k stacks. Thus a 0-PDA is an NFA and a 1-PDA is a conventional PDA. You already know that 1-PDAs are more powerful (recognize a larger class of languages) than 0-PDAs.
 (a) Give an example to show that 2-PDAs are more powerful than 1-PDAs.
 (b) Show that 3-PDAs are not more powerful than 2-PDAs.
 (Hint: Simulate a Turing machine tape by using two stacks.)

5. Show that a language is decidable iff some enumerator enumerates the language in string order. (String order is the standard length-increasing, lexicographic order, see text p 14).

6. Let C be a language. Prove that C is Turing-recognizable iff a decidable language D exists such that $C = \{x| \exists y \in \{0,1\}^* ((x,y) \in D)\}$. (Hint: You must prove both directions of the “iff”. The (←) direction is easier. For the (→) direction, think of y as providing additional information that allows you to confirm when $x \in C$, but without the possibility of looping.)

7. (Optional) Prove the following stronger form of the pumping lemma. Here both pieces v and y must be nonempty when the string s is broken up. The formal statement follows.

 If A is a context-free language, then there is a number p where, if s is any string in A of length at least p, then s may be divided into five pieces, $s = uvxyz$, satisfying the conditions:
 (a) for each $i \geq 0$, $uv^ixy^iz \in A$,
 (b) $v \neq \varepsilon$ and $y \neq \varepsilon$, and
 (c) $|vxy| \leq p$.