Read all of Chapters 3 and 4.

0.1 Read and solve, but do not turn in: Book, 2.16. [CFLs closed under \cup, \circ, \ast]
Solve by using both CFGs and PDAs.

0.2 Read and solve, but do not turn in: Book, 2.18. [(CFL \cap regular) is a CFL]
Note, problems marked with Δ have solutions in the book.

0.3 Read and solve, but do not turn in: Book, 2.26. [Chomsky normal form]

0.4 Read and solve, but do not turn in: Book, 2.30c. [CFL Pumping lemma]

1. Let $\Sigma = \{0, 1, \#\}$ and let $B = \{x\#y \mid x, y \in \{0, 1\}^* \text{ and } x \neq y\}$. Show that B is a CFL.

2. Let $\Sigma = \{1, 2, 3, 4\}$.
 (a) Let $C = \{w \mid w$ has equal numbers of 1s and 2s, and equal numbers of 3s and 4s$\}$.
 Show that C is not context free.
 (b) Use (a) to show that the class of CFLs isn’t closed under complement and intersection.
 (c) Let $D = C \cup (\Sigma\Sigma)^\ast$. Is D a CFL? Prove your answer.
 (d) Let $E = C \cup \Sigma(\Sigma\Sigma)^\ast$. Is E a CFL? Prove your answer.

3. **A Turing machine with left reset** is similar to an ordinary one-tape TM, but the transition function has the form $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{R, \text{RESET}\}$. If $\delta(q, a) = (r, b, \text{RESET})$, when the machine is in state q reading an a, the machine’s head jumps to the left-hand end of the tape after it writes b on the tape and enters state r. Note that these machines do not have the usual ability to move the head one symbol left. Show that Turing machines with left reset recognize the class of Turing-recognizable languages.

4. Show that a language is decidable iff some enumerator enumerates the language in string order. (**String order** is the standard length-increasing, lexicographic order, see text p 14).

5. Let C be a language. Prove that C is Turing-recognizable iff a decidable language D exists such that $C = \{x \mid \exists y \in \{0, 1\}^* \ (\langle x, y \rangle \in D)\}$. (Hint: You must prove both directions of the “iff”. The \leftarrow direction is easier. For the \rightarrow direction, think of y as providing additional information that allows you to confirm when $x \in C$, but without the possibility of looping.)

6. Say that a variable A in CFG G is **useless** if A does not appear in any derivation of any string $w \in L(G)$. Given a CFG G, consider the problem of testing whether G contains any useless variable(s). Formulate this problem as a language and show that it is decidable.

7* (Optional) Recall the MS operation on languages we defined in Problem Set 1. Is the class of CFLs closed under MS? Prove your answer.