Problem Set 1

Problem 1. Read and solve, but do not turn in: Book, 1.14. [swapping NFA accept/non-accept states]

Problem 2. Read and solve, but do not turn in: Book, 1.31. [closure under reversal]

Problem 3. Read and solve, but do not turn in: Book, 1.46b. [Pumping lemma]

You can assume the results from the above problems when solving the problems below.

1. Let \(\Sigma_2 = \{ \[0\], \[1\], \[0,1\], \[1,0\] \}. \) Here, \(\Sigma_2 \) contains all columns of 0s and 1s of height two. A string of symbols in \(\Sigma_2 \) gives two rows of 0s and 1s. Consider each row to be a binary number and let

\[
T = \{ w \in \Sigma_2^2 \mid \text{the bottom row of } w \text{ is three times the top row} \}.
\]

For example, \(\[0] \[0] \[1] \[0] \in T \), but \(\[0] \[0] \[0] \[0] \not\in T \). Show that \(T \) is regular.

2. Let \(\Sigma \) be any language over an alphabet \(\Sigma \). Define \(ADD-ONE(A) \) to be the language containing all strings that can be obtained by adding a symbol in \(\Sigma \) anywhere to a string in \(A \). Thus, \(ADD-ONE(A) = \{ xay \mid xy \in A \text{ where } x, y \in \Sigma^*, a \in \Sigma \} \).

Show that the class of regular languages is closed under the \(ADD-ONE \) operation.

3. For any regular expression \(R \) and \(k \geq 0 \), let \(R^k \) be \(R \) self-concatenated \(k \) times, \(\underbrace{RR\cdots R}_{\text{k times}} \).

Let \(\Sigma = \{0,1\} \).

(a) Let \(A = \{ \theta^k u 1^k \mid k \geq 1 \text{ and } u \in \Sigma^* \} \). Show \(A \) is regular.

(b) Let \(B = \{ \theta^k u 1^k \mid k \geq 1 \text{ and } u \in 1\Sigma^* \} \). Show \(B \) is not regular.

4. String \(w \) is a palindrone if \(w = w^R \). Let \(NEP \) be the language of all strings over \(\Sigma = \{0,1\} \) that are not even-length palindromes. Prove that \(NEP \) is not a regular language.

5. Let \(\Sigma = \{0,1\} \). For \(k \geq 1 \), let \(E_k = \{ w \mid |w| \geq k \text{ and the } k \text{th symbol from the end of } w \text{ is a } 1 \} \).

Here, \(|w| \) means the length of \(w \).

(a) Given \(k \), describe a regular expression for \(E_k \). You may use the exponentation notation given in problem 3.

(b) Given \(k \), describe an NFA with \(k+1 \) states for \(E_k \), with a picture and a formal description.

(c) Prove that for each \(k \), no DFA can recognize \(E_k \) with fewer than \(2^k \) states.

6. (a) Use CFGs to show that the class of CFLs is closed under union.

(b) Let \(E = \{ a^i b^j \mid i \neq j \text{ and } 2i \neq j \} \). Use part (a) to show that \(E \) is a context-free language.

(Hint: Express \(E \) in a different way.)

7. (*) Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA and let \(b \) be a state of \(M \) called its “base”. A reset string for \(M \) and \(b \) is a string \(s \in \Sigma^* \) where \(\delta(q, s) = b \) for every \(q \in Q \). (Here we have extended \(\delta \) to strings, so that \(\delta(q, s) \) equals the state where \(M \) ends up when \(M \) starts at state \(q \) and reads input \(s \).) Say that \(M \) is resettable if it has a reset string for some state \(b \).

Prove that if \(M \) is a \(k \)-state resettable DFA, then it has a reset string of length at most \(k^3 \). (Note: I believe it is unknown whether the bound can be improved to \(o(k^3) \).)