Problem Set 1

Read all of Chapters 1 and 2 except Section 2.4.

0.1 Read and solve, but do not turn in: Book, 1.14. [swapping NFA accept/non-accept states]

0.2 Read and solve, but do not turn in: Book, 1.31. [closure under reversal]

0.3 Read and solve, but do not turn in: Book, 1.46c. [Pumping lemma]

1. Let \(C_n = \{ x \mid x \text{ is a binary number that is a multiple of } n \} \). Show that, for each \(n \geq 1 \), the language \(C_n \) is regular, by giving the formal description of a DFA \(D_n \) that recognizes \(C_n \).

2. The Hamming distance \(H(x, y) \) between two strings \(x \) and \(y \) of equal length, is the number of corresponding symbols at which \(x \) and \(y \) differ. For example, \(H(1101111, 0001111) = 2 \).

For any language \(A \), let \(N_1(A) = \{ w \mid H(w, x) \leq 1 \text{ for some } x \in A \} \).

Show that the class of regular languages is closed under the \(N_1 \) operation.

3. (a) Let \(B = \{ 1^k y \mid y \in \{0, 1\}^* \text{ and } y \text{ contains at least } k \text{ 1s, for } k \geq 1 \} \).

Show that \(B \) is a regular language.

(b) Let \(C = \{ 1^k y \mid y \in \{0, 1\}^* \text{ and } y \text{ contains at most } k \text{ 1s, for } k \geq 1 \} \).

Show that \(C \) isn’t a regular language.

4. Let \(M_1 \) and \(M_2 \) be DFAs that have \(k_1 \) and \(k_2 \) states, respectively, and let \(U = L(M_1) \cup L(M_2) \).

(a) Show that if \(U \neq \emptyset \), then \(U \) contains some string \(s \), where \(|s| < \max(k_1, k_2) \).

(b) Show that if \(U \neq \Sigma^* \), then \(U \) excludes some string \(s \), where \(|s| < k_1k_2 \).

5. Let \(x \) and \(y \) be strings over some alphabet \(\Sigma \). Say \(x \) is a substring of \(y \) if \(y \in \Sigma^* x \Sigma^* \) and say \(x \) is a major substring of \(y \) if \(x \) is a substring of \(y \) and \(|x| \geq \frac{1}{2}|y| \).

For any language \(B \), let \(MS(B) = \{ x \mid x \text{ is a major substring of } y \text{ for some } y \in B \} \).

Show that if \(B \) is regular then \(MS(B) \) is context-free.

6. Consider the following CFG \(G \):

\[
S \rightarrow aSb \mid aSbb \mid \varepsilon
\]

Describe \(L(G) \) and show that \(G \) is ambiguous.

Give an unambiguous grammar \(H \) where \(L(H) = L(G) \) and prove that \(H \) is unambiguous.

7. (optional) Strengthen Problem 5 by showing that if \(B \) is regular then \(MS(B) \) is also regular.