
18.404 midterm review sessions
hallo! — We’ll offer problem-solving practice sessions,◦ in-person. These midterm review ←Coordinates:

Mon 7:30-9pm in room 2-190 with Zed, Sarah
Tue 7:30-9pm in room 2-190 with Leo, Nathan

sessions are completely optional. It’s easy to imagine a non-attendee earning an
excellent midterm grade.

If you choose to work through these practice problems, you may want to play
a kind of Concept Bingo. Notice whether and in what context you use the fol-
lowing concepts:◦ ←Your solutions to these practice problems will

probably miss a few of these concepts. That’s
okay. These problems support multiple nice
solutions; different solutions will use different
concepts in this list.

Automata

□ closure properties for regular languages and context-free languages
□ pigeonhole principle on set of states (e.g. pumping lemma)
□ equivalence of FAs and regular expressions
□ equivalence of PDAs and CFGs

Computability, abstract principles

□ closure properties for decidable languages and recognizable languages
□ properties of mapping reductions (e.g. transitivity, complement)
□ simulation of one TM variant by another

Computability, concrete examples

□ decidability of ALBA,APDA,EPDA

□ undecidability of ATM,ALLTM,ETM,ALLLBA,ELBA,ALLPDA

□ recognizability of ATM,ETM,ALLLBA,ELBA,ALLPDA

Computability, reduction techniques

□ simulation for creating mapping reductions
□ equivalence of enumerators and TM recognizers
□ computation history method

What’s above is an INcomplete list of concepts. Everything from class so far
(excluding time complexity) is fair game.

regular languages

showing regularity

Let L = {w containing exactly one a or exactly one b}.
Show that L is regular by explicitly giving:

□ a regular expression;
□ an NFA or DFA.

Solution — This regular expression works: (b⋆ab⋆) ∪ (a⋆ba⋆). We can
directly read off an NFA from that regular expression. This NFA nondetermin-
istically guesses whether to check for unique a’s or unique b’s; the checks them-
selves each have three arrows, representing the three concatenated terms in the
regexp’s parentheses. See figure in margin. (You could also construct a DFA, but
the NFA construction is simpler.) ■

pumping lemma question

Let L = {w contains only 0’s and |w| = k2 for some k ∈ N}. Show that L is not
regular.

Solution — We use the pumping lemma.
Suppose L is regular and it has pumping length p. Then take s = 0(p

2) ∈ L.
By the pumping lemma, we can pump some substring of length k ≤ p and it
should stay in the language. But 0p

2+k for k ≤ p is not square (since the next
square after p2 is p2 + 2p+ 1 > p2 + k), so it is not in L. By contradiction, L is
not regular. ■

regular languages with lots of 1s

Call a language major if it includes some string s with with strictly more 1s
than 0s. ◦ For example, the language 0⋆1⋆ is major; the language (0∪ 10)⋆ is not ←This concept seems to involve (unbounded)

counting. Which machines that we discussed
can count? For instance, can DFAs count?

major.

□ Is L = {⟨M⟩ | M is a DFA with a major language} decidable?

Solution — YES. A DFA M’s language is major precisely when L(M)∩ F is
non-empty, where F = {x | x has strictly more 1s than 0s}. F is a CFL — we give
a grammar in the margin. ◦ There is also a simple PDA that counts the number ←The following grammar has language F:

S→ SS | T1 T → 0T1 | 1T0 | TT | ϵ

By induction on string-length, T generates all
and only strings with an equal number of 0’s
and 1’s. So by induction on string-length, S’s
language is F.

of 0’s and 1’s.

Using the construction showing CFLs are closed under intersection with regu-
lar languages, we can algorithmically construct a CFG whose language is L(M)∩
F. Now, we can use our decider for ECFG, and output the negation of its answer.
■

context-free languages

showing context-freeness

□ Is L = {w#x such that wR is a substring of x} context-free?

Solution — YES. Let’s make a PDA. Push to the stack until you see #, then
nondeterministically decide when to start popping; as you pop, compare to the
input. If the stack symbol and input symbol are ever different, reject. If the stack
is empty after seeing #, accept. ■

Solution — YES. Let’s make a CFG. We can describe L as containing all
strings of the form w#awRb, i.e., palindromes with fluff added on either side of
the right half. Without the a and b, this is just palindromes centered on #, which
P → 0P0 | 1P1 | # generates. We want to put fluff immediately after the # and as a
suffix to the overall string. The rules to the right implement this idea. ■

S→ PF

P→ 1P1 | 0P0 | #F

F→ F1 | F0 | ϵ

closure properties

Suppose A is context free, B is not context free. Which of the following are
possible:

□ B = A∩C for C regular?

Solution — NO, because CFLs are closed under intersection with regular
languages (so B would have to be context-free). ■

□ B = A∩C for C context free?

Solution — YES, because CFLs are not closed under intersection (recall the
example A = anbnc∗, C = a∗bncn). ■

□ B = A∪C for C regular?

Solution — NO, because a regular language is also CFLs and CFLs are
closed under union. ■

□ B = A∪C for C context free?

Solution — NO, because CFLs are closed under union. ■

mapping reductions

the butterfly’s head

Remember: ATM and ATM lie on opposite wings◦ of our butterfly diagram. ←This is a poetic way to say that ATM is recog-
nizable but its complement ATM is not.

□ True or false? ATM ≤m ATM.
Solution — FALSE.◦ We can’t m-reduce a non-recognizable language to a ←By complementing both sides of the ≤m sign,

we get the corollary that ATM ≤m ATM is also
false.

recognizable one. ■

Can we invent some problem (i.e., language) that’s harder than both ATM and
ATM? Well, we could make the problem’s solutions encode solutions both to
ATM and to ATM. So let J = 0ATM ∪ 1ATM. That’s shorthand for:

J = {b(⟨M⟩ ,w) such that TM M accepts w if and only if bit b equals 0}

Then J sits atop both ATM and its complement in the butterfly:◦ ATM ≤m J ←□ [A] Prove this!

and ATM ≤m J. Moreover, J is on the axis of symmetry: J ≤m J.◦ ←□ [B] And prove this, too!
Solution — [A]: Mapping reduce by

prepending 0 (resp., 1). ■
Solution — [B]: Mapping reduce by invert-

ing the input’s first bit. Note that this inversion
preserves well-formedness of strings. ■

□ Finally, is it true that ELBA ≤m J?
Solution — YES, it’s true. Since ELBA is recognizable, it mapping reduces

to ATM. So: ELBA ≤m ATM ≤m J. ■

ahh! shh!

Consider these two languages:◦ ←You’ll notice that AH and SH seem dual. But
we’ve learned to tread with care when making
such comparisons.
□ What goes wrong with the following at-
tempt to reduce AH ≤m SH?
Reduction attempt: map ⟨M⟩ to

〈
M̃

〉
where M̃

simulates M and loops forever if M̃ halts, else halt.
Then ⟨M⟩ ∈ AH if and only if

〈
M̃

〉
̸∈ SH.

Solution — We can’t flesh out that pseudo-
code into code: there is no way to implement
the conditional “if M̃ halts”. Or, if we test this
condition by naive simulation, M might loop
in which case we never reach the code after the
simulation that asks us to halt. ■

AH = {⟨M⟩ such that M is a TM that halts on all inputs}

SH = {⟨M⟩ such that M is a TM that halts on some input}

□ Is AH recognizable? How about its complement?
Solution — NEITHER AH nor AH is recognizable, since we can mapping

reduce both ATM and ATM to AH. Given (⟨M⟩ ,w), make M′ that on input x

simulates M on w for |x| steps, then loops forever iff M has by then accepted.
Then M′ always halts precisely when M does not accept w, so we’ve verified
ATM ≤ AH. Given (⟨M⟩ ,w), make M̃ that on input x simulates M on w, then
loops forever unless M accepts w. Then M̃ always halts precisely when M ac-
cepts w, so we’ve verified ATM ≤ AH.
■
□ Is SH Turing-recognizable? How about its complement?

Solution — ONLY SH, not its complement, is Turing-recognizable. The
following TM recognizes SH: Given input ⟨M⟩, for each number-string pair (k, s),
simulate M on s for k steps and accept if M has halted within these k steps. To
show that SH is not Turing-recognizable, we mapping reduce ATM ≤m SH.
Given (⟨M⟩ ,w), make M̃ that on input x simulates M on w, then loops forever
unless M accepts w.◦ Then M̃ sometimes halts precisely when M accepts w, so ←Observe: this is the same construction and

argument as in the AH problem.we’ve verified ATM ≤m SH. ■

a mapping reduction edge case

□ True or false? Whenever A is decidable and B is regular: A ≤m B.
Solution — NO, due to the cases B = {} and B = Σ∗. A mapping function

must, by definition, map strings in A to strings in B, and strings not in A map to
strings not in B; but this is impossible when, for example, there are strings in A

but there are no strings in B! ■

all together now

double the tapes is double the fun

For this problem, we define a 2-tape DFA. A 2-tape DFA has a pair of inputs
(x,y), presented on two (finite) tapes, with a read-only, left-to-right head on each
tape. The transition function is a mapping Q× (Σ× Σ) → Q× {Head 1, Head 2},
to indicate the new state and which head to step right. The machine accepts if
the machine is in an accepting state when one of the heads moves off the end of
its tape.

We’ll be interested in showing that the following language is decidable:

ALL2-tape DFA = {⟨M⟩|M is a 2-tape DFA that accepts every input pair (x,y)}.

□ Given a 2-tape DFA M, show how to construct a PDA P with alphabet Σ∪ {#},
such that L(P) is empty if and only if M accepts every (x,y).

Solution — Consider a PDA that pushes symbols from the input onto the
stack until it sees a #. Then, it treats the stack and the remaining portion of the
input as the two tapes of the 2-tape DFA, simulates M on that pair of inputs, and
outputs the reverse of its answer. ◦ Observe that, if this PDA is given input xR#y ←Moving the first head right corresponds to

popping the top input off of the stack, while
moving the second head right corresponds to
the PDA moving right on its input.

for x,y ∈ Σ∗, it will accept if and only if M rejects (x,y). On inputs with zero or
more than one copies of #, we will just have the PDA always reject.

This PDA will accept some input if and only if there is some (x,y) that M

rejects, so L(A) will be empty if and only if M accepts every input. ■

□ Using the above, conclude that ALL2-tape DFA is dedidable.

Solution — The above gives us a reduction showing ALL2-tape DFA ≤m

EPDA. Recall that EPDA is equivalent to ECFG, which we’ve shown is decidable.
So, ALL2-tape DFA is decidable. ■

once more, with nondeterminism!

We’ll now make a slight modification to the setup: we instead consider 2-tape
NFAs. The picture is the same as before, except now the transition function is
nondeterministic — i.e. it is of the form Q× (Σ×Σ) → P(Q× {Head 1, Head 2}).
As before, we define the ALL problem:

ALL2-tape NFA = {⟨M⟩| M is a 2-tape NFA that accepts every input pair (x,y)}.

Interestingly, this modification of the model actually changes the story entirely.

□ Show that ALL2-tape NFA is undecidable.

Solution — We use the computation history method. Fixing an arbitrary
Turing machine T and input w, our goal will be to design a 2-tape NFA that
rejects if and only if its input (x,y) is a well-formed encoding of an accepting
computation history of T on w.

The encoding we consider will make use of special symbols # (as a delimiter
between states) and $ (as an end-of-tape marker). We want our 2-NFA to reject if
its input is

x = y = C1#C2# . . . #Ct$

for C1, C2, . . . , Ct an accepting computation history of T on w. To do so, we will
have our machine nondeterministically choose one of the following options:

• Move the two heads right in sync, and accept if x and y disagree on any index.
• Accept if the input is badly formed in the sense of including a $ in the middle

or not including a $ at the end (this can be checked with just one head).
• Accept if the C1 isn’t the starting configuration of T on w, or if Ct doesn’t

have T ’s accepting state (this can be checked with just one head).
• Move the two heads in sync until non-deterministically choosing, on some #,

to instead leave the first head in place and move the second head to the next
#. Moving them in sync again, now the first head is reading Ci and the sec-
ond is reading Ci+1 — accept if they find an offset where the configuration
transition is invalid.

If x = y = C1#C2# . . . #Ct$ for C1, C2, . . . , Ct an accepting computation
history of T on w, then none of those 4 conditions will hold, and so the 2-tape
NFA will reject in every nondeterministic branch, and thus will reject overall. On
the other hand, if there exists no accepting computation history of T on w, every
possible input to this 2-tape NFA will satisfy at least one of the 4 conditions
above, and will thus be accepted. So, this 2-tape NFA accepts all strings iff
T rejects w. This reduction shows ATM ≤m ALL2-tape NFA, so ALL2-tape NFA is
undecidable. ■

