
18.404 midterm review sessions
hallo! — We’ll offer problem-solving practice sessions,◦ in-person. These midterm review ←Coordinates:

Mon 7:30-9pm in room 2-190 with Zed, Sarah
Tue 7:30-9pm in room 2-190 with Leo, Nathan

sessions are completely optional. It’s easy to imagine a non-attendee earning an
excellent midterm grade.

If you choose to work through these practice problems, you may want to play
a kind of Concept Bingo. Notice whether and in what context you use the fol-
lowing concepts:◦ ←Your solutions to these practice problems will

probably miss a few of these concepts. That’s
okay. These problems support multiple nice
solutions; different solutions will use different
concepts in this list.

Automata

□ closure properties for regular languages and context-free languages
□ pigeonhole principle on set of states (e.g. pumping lemma)
□ equivalence of FAs and regular expressions
□ equivalence of PDAs and CFGs

Computability, abstract principles

□ closure properties for decidable languages and recognizable languages
□ properties of mapping reductions (e.g. transitivity, complement)
□ simulation of one TM variant by another

Computability, concrete examples

□ decidability of ALBA,APDA,EPDA

□ undecidability of ATM,ALLTM,ETM,ALLLBA,ELBA,ALLPDA

□ recognizability of ATM,ETM,ALLLBA,ELBA,ALLPDA

Computability, reduction techniques

□ simulation for creating mapping reductions
□ equivalence of enumerators and TM recognizers
□ computation history method

What’s above is an INcomplete list of concepts. Everything from class so far
(excluding time complexity) is fair game.



regular languages

showing regularity

Let L = {w containing exactly one a or exactly one b}.
Show that L is regular by explicitly giving:

□ a regular expression;
□ an NFA or DFA.

pumping lemma question

Let L = {w contains only 0’s and |w| = k2 for some k ∈ N}. Show that L is not
regular.

regular languages with lots of 1s

Call a language major if it includes some string s with with strictly more 1s
than 0s. ◦ For example, the language 0⋆1⋆ is major; the language (0∪ 10)⋆ is not ←This concept seems to involve (unbounded)

counting. Which machines that we discussed
can count? For instance, can DFAs count?

major.

□ Is L = {⟨M⟩ | M is a DFA with a major language} decidable?



context-free languages

showing context-freeness

□ Is L = {w#x such that wR is a substring of x} context-free?

closure properties

Suppose A is context free, B is not context free. Which of the following are
possible:

□ B = A∩C for C regular?

□ B = A∩C for C context free?

□ B = A∪C for C regular?

□ B = A∪C for C context free?



mapping reductions

the butterfly’s head

Remember: ATM and ATM lie on opposite wings◦ of our butterfly diagram. ←This is a poetic way to say that ATM is recog-
nizable but its complement ATM is not.

□ True or false? ATM ≤m ATM.

Can we invent some problem (i.e., language) that’s harder than both ATM and
ATM? Well, we could make the problem’s solutions encode solutions both to
ATM and to ATM. So let J = 0ATM ∪ 1ATM. That’s shorthand for:

J = {b(⟨M⟩ ,w) such that TM M accepts w if and only if bit b equals 0}

Then J sits atop both ATM and its complement in the butterfly:◦ ATM ≤m J ←□ [A] Prove this!

and ATM ≤m J. Moreover, J is on the axis of symmetry: J ≤m J.◦ ←□ [B] And prove this, too!

□ Finally, is it true that ELBA ≤m J?

ahh! shh!

Consider these two languages:◦ ←You’ll notice that AH and SH seem dual. But
we’ve learned to tread with care when making
such comparisons.
□ What goes wrong with the following at-
tempt to reduce AH ≤m SH?
Reduction attempt: map ⟨M⟩ to

〈
M̃

〉
where M̃

simulates M and loops forever if M̃ halts, else halt.
Then ⟨M⟩ ∈ AH if and only if

〈
M̃

〉
̸∈ SH.

AH = {⟨M⟩ such that M is a TM that halts on all inputs}

SH = {⟨M⟩ such that M is a TM that halts on some input}

□ Is AH recognizable? How about its complement?

□ Is SH recognizable? How about its complement?

a mapping reduction edge case

□ True or false? Whenever A is decidable and B is regular: A ≤m B.



all together now

double the tapes is double the fun

For this problem, we define a 2-tape DFA. A 2-tape DFA has a pair of inputs
(x,y), presented on two (finite) tapes, with a read-only, left-to-right head on each
tape. The transition function is a mapping Q× (Σ× Σ) → Q× {Head 1, Head 2},
to indicate the new state and which head to step right. The machine accepts if
the machine is in an accepting state when one of the heads moves off the end of
its tape.

We’ll be interested in showing that the following language is decidable:

ALL2-tape DFA = {⟨M⟩| M is a 2-tape DFA that accepts every input pair (x,y)}.

□ Given a 2-tape DFA M, show how to construct a PDA A with alphabet Σ∪ {#},
such that L(A) is empty if and only if M accepts every (x,y).

□ Using the above, conclude that ALL2-tape DFA is dedidable.

once more, with nondeterminism!

We’ll now make a slight modification to the setup: we instead consider 2-tape
NFAs. The picture is the same as before, except now the transition function is
nondeterministic — i.e. it is of the form Q× (Σ×Σ) → P(Q× {Head 1, Head 2}).
As before, we define the ALL problem:

ALL2-tape NFA = {⟨M⟩| M is a 2-tape NFA that accepts every input pair (x,y)}.

Interestingly, this modification of the model actually changes the story entirely.

□ Show that ALL2-tape NFA is undecidable.


