
Notes 8.370/18.435 Fall 2022
Lecture 27 Prof. Peter Shor

Today, we start our unit on quantum error-correcting codes.
I’m going to start with a digression into classical information theory. In 1948,

Claude Shannon published a paper, “A Mathematical Theory of Communication”,
which started the field of information theory. In it, he showed that noisy communi-
cation channels had a capacity, and he derived Shannon’s formula for the capacity of
a channel. There is a protocol such that you can send information over a channel at
a rate less then its capacity, in the limit as the length of the message goes to infinity,
and almost always succeed. On the other hand, if you try to send information over
a channel at a rate larger than the capacity, it is overwhelmingly likely that the mes-
sage the receiver gets has errors—i.e., it is different from the message that the sender
transmitted.

Claude Shannon’s theory was not constructive. While he showed that an algorithm
existed that would succeed in transmitting information at nearly the channel capacity
existed, it was a randomized construction that didn’t explicitly produce such an algo-
rithm. Worse, the algorithm itself would take exponential time to implement in the
most straightforward way. It wasn’t until forty-five years after Shannon’s paper that
somebody experimentally found an efficient coding and decoding procedure that came
close to the channel capacity (turbo codes), and not until 60 years later until a cod-
ing method was found that provably approached Shannon’s bound in the limit of long
messages (these were polar codes).

However, only two years after Shannon published his paper, Richard Hamming
discovered the first error-correcting codes, and in the next few decades, computer tech-
nology advanced greatly and error correcting codes were developed to the point where
they could be used in practice for the reliable transmission of information over noisy
channels. Hamming codes are one of a class of codes called linear codes, and these
have nice properties. They are the class of codes that is most often used in practice,
and they have received extensive study.

We will look at the code that Hamming discovered much more closely in future
classes, but I want to explain a little bit about how it works right now. You take a
four-bit message, and encode it into a seven-bit message in such a way that even if one
of the seven bits is wrong, you can still recover the original four bits. The encoding is
done by multiplying the message m by a generator matrix G, where

G =

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

1

The decoding is done by multiplying by a matrix H , where

H =

0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1

.

We have GH = 0(mod 2). This is because G =
(
I4 S

)
and H =

(
S
I3

)
, so

GH = 2S = 0, where S is the 4× 3 matrix
0 1 1
1 0 1
1 1 0
1 1 1

 .

Suppose that there is a one-bit error in the received transmission r. Then

r = mG+ e

and
rH = mGH + eH = eH,

so rH = eH is independent of the message, and tells you what the error is. It is called
the syndrome (because you can use it to diagnose the error). Computing the error e
from the syndrome eH is computationally difficult problem in general; the hard part of
designing error-correcting codes is finding codes where there is an efficient algorithm
going from the syndrome to the error.

Before Hamming, the only error-correcting codes engineers knew about were rep-
etition codes. In these, you just repeat the message bit k times. If k = 2t + 1, the
code can correct t errors. These codes can be put into the framework of linear codes
described above. For a repetition code3, the generator matrix is

G = [1, 1, 1, 1, . . . , 1].

Let’s look at the three-bit repetition more carefully. Assume that each bit has a p
probability of having an error, and a 1− p probability of being correct. Then there will
be an error in an encoded bit if and only if at least two of the encoding bits have errors,
so instead of a probability p of having an error, the probability is 3p2(1 − p) + p3,
which is an improvement as long as p < 1

2 , and is around 3p2 if p is small.
Today, we will look at the quantum analog of repetition codes. Since it is impossi-

ble to clone a qubit, you can’t actually implement a repetition code |ψ〉 → |ψ〉 |ψ〉 |ψ〉.
One thing you could do instead is use the unitary:

U |0〉 |00〉 = |000〉
U |1〉 |00〉 = |111〉

2

Here, we first adjoint the qubits |00〉 to the qubit we want to encode and then perform
the unitary.

This is a three-qubit code that protects against bit-flip errors. It was first investi-
gated by Asher Peres in 1985. The code maps

α |0〉+ β |1〉 → α |000〉+ β |111〉 ,

so you can see it does not perform quantum cloning; if you cloned the original qubit,
you would get

(
α |0〉+ β |1〉

)⊗3
.

This code can correct one bit-flip, or σx, error. How does this work? We measure
the answer to the question “which bit is different?” More specifically, we project the
three qubits onto one of the following four subspaces:

000〉〈000	+	111〉〈111
100〉〈100	+	011〉〈011
010〉〈010	+	101〉〈101
001〉〈001	+	110〉〈110

Once we know which subspace are in, we can correct the error. For example, if the
state was projected onto the third subspace above, we would apply a σx to the second
qubit to correct it.

How do we encode a qubit into this code? We use the following circuit:

α |0〉+ β |1〉

α |000〉+ β |111〉|0〉

|0〉

How do we decode? We basically reverse the circuit above, which gives exactly the
same circuit since the two CNOT gates commute with each other:

α |000〉+ β |111〉

α |0〉+ β |1〉

|0〉

|0〉

How do we correct errors? We use the following quantum circuit, that projects onto
one of the four subspaces described above:

3

|ψ〉

|0〉

|0〉

The two measurement results here are called the syndrome and tell us what the error is.
If the two measurements are both |0〉, then we know that |ψ〉 was in the code sub-

space. If the first one is |1〉 and the second is |0〉, we know that the first and third qubits
are qual, but the first and second qubits are different. This means that the second qubit
must be different. Thus, if there is only one error, it is on the second qubit, and we can
correct the state by applying σx to the second qubit. Similarly, if we get the measure-
ment results (0, 1), we know the third qubit is different, and if the measurement results
are (1, 1), we know the first qubit is different.

For bit-flip errors, the probabilities work exactly the same way as they did for the
classical three-bit code. If the probabililty of a bit-flip error on a single qubit is p, then
the probability of a bit-flip error on the encoded qubit is 3p2 + p3, which is approxi-
mately 3p2 for small p.

But what about phase-flip errors? What happens if we apply a σz to one of the three
qubits in the code? We will call an encoded |0〉 and |1〉 a logical |0〉 and |1〉, and we
will represent them by

|0〉L = |000〉 |1〉L = |111〉

If we apply a phase-flip error in any of three three encoding qubits, it will take |0〉 to
|0〉 and |1〉 to − |1〉. That is, it will apply a phase error to the logical qubit. So if the
probability of a phase error on a single qubit is p, the probability of a phase error on
the encoded qubit is 3p+ p3, or approximately 3p for small p.

So we can reduce the error rate for bit flip errors at the cost of increasing the error
rate for phase flip errors. Is there anything we can do to protect phase-flip errors?

There is. Recall that a Hadamard gate took a σx to a σz and vice versa. That is, it
takes a bit flip error to a phase flip error and vice versa. Thus, we can find a code that
interchanges the role of bit-flip and phase-flip errors by applying a Hadamard gate to
each of our qubits. This code is simply

|0〉 → |+++〉
|1〉 → |− −−〉 .

4

There is an equivalent way to represent this code, namely:

|0〉L →
1

2

(
|000〉+ |011〉+ |101〉+ |110〉

)
,

|1〉L →
1

2

(
|100〉+ |010〉+ |001〉+ |111〉

)
.

We obtain this alternate representation by applying a Hadamard gate to the encoded
qubit before encoding it. This code encodes a |0〉 as the superposition of all states with
an even number of 0’s, and a |1〉 as the superposition of all states with an odd number
of 1s. It protects against phase-flip errors, but any bit-flip error in an encoding qubit
results in a bit-flip error on the logical qubit, so bit-flip errors are roughly three times
as likely as on unencoded qubits. This can be seen directly from the fact that a bit-flip
error takes a bit string with an odd number of 1’s to a bit string with an even number of
1’s.

So now we have a choice: we can protect against one bit-flip error, but only by
making phase-flip errors more likely, or we can protect against one phase-flip errors
but only by making bit-flip errors more likely. Is there any way around this problem?

It turns out there is. The answer comes from a technique of classical coding theory:
you concatenate the two codes. This means you first encode using one code, and then
you encode using the other. Let’s see how this works.

|0〉 → |+++〉 → (|000〉+ |111〉)⊗3

|1〉 → |− −−〉 → (|000〉 − |111〉)⊗3

Now, what happens? if you have a bit-flip error, it gets corrected immediately by
the inner code. If you have a phase-flip error, the inner code turns this into a phase-flip
on the logical qubit of the inner code, which gets corrected by the outer code. Thus,
any single σx or σz can be corrected.

How about σy errors? They can be corrected as well. A σy error can be viewed as
a σx error and a σz error acting on the same qubit, since σy = iσxσz . Thus, any single
σy error can be corrected as well—the inner code will correct the σx component and
the outer code the σz component.

But what about more general errors? It turns out that the 9-qubit code given in this
lecture can correct these as well, as long as they are restricted to one qubit. We will see
this in the next lecture.

5

