
Notes 8.370/18.435 Fall 2022
Lecture 25 Prof. Peter Shor

In this lecture, we will give a lower bound that shows that Grover’s algorithm is
nearly optimal. In particular, we assume that you have a quantum state space with
basis {|1〉 , |2〉 , . . . |N〉} and an oracle function Ox such that

Ox |y〉 =

{
− |y〉 if y = x

|y〉 if y 6= x .

We will show that any algorithm which always returns the output |x〉 must call the
oracle on the order of

√
N times. We first show that this is true if the algorithm is

required to give the answer |x〉 with probability 1, and then show that the proof still
works if we just require the answer with probability at least 1− ε.

One amazing thing about this proof is that it was developed independently from
Grover’s algorithm, starting with the motivation of whether you can show that quantum
computers can’t solve NP-complete problems (although it was not published until after
Grover’s paper, and the original paper mentions Grover).

We model our algorithm as follows. First, by the principle of deferred measure-
ment (see homework), we can assume that we postpone all the measurements in our
algorithm until the end. The algorithm will then consist of unitary operations and calls
to the oracle. We will define Uj so that the algorithm alternates calling the oracle Ox

and implementing the unitary Uk. Suppose the algorithm requires t calls to the oracle
in the worst case. Then, we define the algorithm to be:

|ψx
t 〉 = UtOxUt−1OxUt−2 . . . U1Ox |ψ0〉

If not all runs of the algorithm use the same number of calls to the oracle, we can
always add more dummy calls to the oracle that in essence do nothing.

Now, suppose we are able to identify xwith probability 1 after this algorithm. Then
it must be the case that all the |ψx

t 〉 are orthonormal. We will bound how quickly they
are able to become distinct.

Define the state of the quantum computer after k oracle calls to be

|ψx
k〉 = UkOxUk−1OxUk−2 . . . U1Ox |ψ0〉

We will define a measure of how quickly the states |ψx
k〉 are diverging from each other.

In order to do this, let
|ψt〉 = UtUt−1Ut−2 . . . U1 |ψ0〉 ,

so |ψt〉 is what we get when we run the algorithm with no oracle calls (or equivalently,
when there are no solution states). Now, define

Dk =
∑
x

∣∣ |ψx
k〉 − |ψk〉

∣∣2.
We will use Dk as a measure of how far the states |ψx

k〉 are from each other. In other to
get a bound on the number of oracle calls we need, we will need to prove two things:

1

1. an upper bound on Dk,

2. a proof that if Dt is too small, then we cannot distinguish the |ψx〉 from each
other well.

We first prove the upper bound for Dk.
We have

Dk+1 =
∑
x

∣∣Uk+1Ox |ψx
k〉 − Uk+1 |ψk〉)

∣∣2
=
∑
x

∣∣Ox(|ψx
k〉 − |ψk〉) + (Ox − I) |ψk〉

∣∣2
≤
∑
x

∣∣Ox(|ψx
k〉 − |ψk〉)

∣∣2 + ∣∣(Ox − I) |ψk〉
∣∣2 + 2

∣∣(Ox − I) |ψk〉
∣∣ · ∣∣Ox(|ψx

k〉 − |ψk〉)
∣∣,

where we have added and subtracted the term Ox |ψk〉, and used the inequality
|a+ b|2 ≤ |a|2 + |b|2 + 2|b||a|.

We will deal with the three terms in this inequality in order. For the first term,
because unitary transformations preserve length,∑

x

∣∣Ox(|ψx
k〉 − |ψk〉)

∣∣2 =
∑
x

∣∣ |ψx
k〉 − |ψk〉

∣∣2 = Dk

For the second term, we have (Ox − I) |ψk〉 = −2 〈x|ψk〉 |x〉 because Ox |y〉 = |y〉 if
y 6= x and Ox |x〉 = −2 |x〉. Thus,∑

x

∣∣(Ox − I) |ψk〉
∣∣2 =

∑
x

|2 〈x|ψk〉 |2 = 4;

because {|x〉} is a basis. Finally, we have

2
∑
x

∣∣(Ox − I) |ψk〉
∣∣ · ∣∣Ox(|ψx

k〉 − |ψk〉)
∣∣ = 2

∑
x

| 〈x|ψk〉
∣∣2 · ∣∣ |ψx

k〉 − |ψk〉)
∣∣.

Now, we use the Cauchy-Schwarz inequality, v · w ≤ |v||w|, on this term. Thus,

2
∑
x

∣∣2 〈x|ψk〉
∣∣ · ∣∣ |ψx

k〉 − |ψk〉
∣∣ ≤ 4

√∑
x

∣∣ 〈x|ψk〉
∣∣2√∑

x

∣∣ |ψx
k〉 − |ψk〉

∣∣2
= 4
√
Dk .

We thus have, substituting into the equation for Dk+1,

Dk+1 ≤ Dk + 4
√
Dk + 4

We show by induction that this gives Dk ≤ 4k2. It’s clear that D0 = 0. Now, assume
that this equation holds true for Dk. We have

Dk+1 ≤ Dk + 4
√
Dk + 4 ≤ 4k2 + 8k + 4 = 4(k + 1)2,

2

and we are done.
The next thing we need to do is show that Dt has to be large in order to identify

x. We will assume that we find x with certainty; you can modify the proof so that this
is not necessary. If we find x with certainty, then the |ψx

t 〉 are othonormal for all N
values of x. We will then show that Dt ≥ 2N − 2

√
N .

Let’s look at the equivalent problem where we have |e1〉, |e2〉, |e3〉, . . ., |eN 〉, and
we want to find the vector |v〉 that minimizes

∑N
i=1 | |ei〉 − |v〉 |2. It turns out that

|v〉 = 1√
N

∑N
i=1 |ei〉, and one can calculate that for this value of |v〉,

∑N
i=1 | |ei〉 −

|v〉 |2 = 2N − 2
√
N . Since Dt ≤ 2t2, this shows that 2t2 ≥ 2N − 2

√
N , which

implies that t >
√
N − 1.

We now show that this is indeed the minimum. We have that

| |ei〉 − |v〉 |2 = 〈ei|ei〉+ 〈v|v〉+ 〈ei|v〉+ 〈v|ei〉 ≥ 2− 2| 〈ei|v〉 |

so
N∑
i=1

| |ei〉 − |v〉 |2 ≥ 2N − 2
∑
i

| 〈ei|v〉 |.

By Cauchy-Schwarz,

N∑
i=1

| 〈ei|v〉 | · 1 ≤

√√√√ N∑
i=1

| 〈ei|v〉 |2

√√√√ N∑
i=1

1 =
√
N

Thus, we have
N∑
i=1

| |ei〉 − |v〉 |2 ≥ 2N − 2
√
N,

and we are done.
In fact, you can show that even if you only require the algorithm to succeed half

the time, it still must take order
√
N steps; you can see the proof of this in the Nielsen

and Chuang.

3

