
Notes 8.370/18.435 Fall 2022
Lecture 23 Prof. Peter Shor

Today, we are talking about the discrete log algorithm. This is a problem that is very
similar in some respects to the factoring problem. While there is no formal reduction
between these problems, they both can be used for public key cryptosystems, and every
time somebody has found a better algorithm for one of them, this discovery has been
followed by the discovery of an analogous algorithm for the other one.

What is the discrete log problem? We will assume we have a prime P (the discrete
log problem is also defined for other numbers, but the algorithm is easier for a prime).
The multiplicative group modulo a prime P always has a generator g, where any non-
zero number h modulo P can be represented as gx ≡ h (mod P). For example, 2 is a
generator modulo 11 because he sequence of powers of 2 (mod 11) is:

21 = 2, 22 = 4, 23 = 8, 24 = 5, 25 = 10, 26 = 9, 27 = 7, 28 = 3, 29 = 6, 210 = 1,

and covers all ten non-zero numbers modulo 11. The number 3 is not a generator,
because 35 = 243 ≡ 1 (mod 11), and thus only five numbers are powers of 3 modulo
11.

Given a prime P , and a potential generator g, there is an efficient quantum algo-
rithm for testing whether g is a generator for the multiplicative group P – you compute
the periodicity of the sequence

1, g, g2 (mod P), g3 (mod P), g4 (mod P), . . .

and see whether it is P − 1. There’s no efficient classical algorithm to test whether
something is a generator g for a prime P , but in fact, for the classical application we
will discuss (Diffie-Hellman key exchange), anything that looks like a generator will
do.

The discrete logarithm problem is important for classical cryptography. One cryp-
tographic protocol that relies on the hardness of discrete logarithms is fhe Diffie-
Hellman key exchange protocol.

Suppose that Alice and Bob are two people who would like to communicate se-
curely, but only have access to a channel that they believe an eavesdropper has access
to. If they share a secret that nobody else knows, they can use this to communicate
securely, by using it as the key for some secret-key cryptosystem.

Suppose they don’t have a secret, what can they do? Key exchange protocols gen-
erate secrets that only the two participants know. The Diffie-Hellman key exchange
protocol is one of the oldest, and will let Alice and Bob generate a secret that only they
know (assuming that discrete log is hard).

How does Diffie-Hellman work? Alice and Bob agree on a large prime P and a
generator g for it. They then each choose a random number between 2 and P −2. Let’s
say that Alice chooses x and Bob chooses y. Alice sends Bob gx (mod P), and Bob
sends Alice gy (mod P). Alice then raises gx to the y’th power, and Bob raises gy to
the x’th power (mod P), so they both obtain gxy (mod P). This is their shared secret.

What does an eavesdropper know about their secret? She knows g, gx (mod P),
and gy (mod P). If the eavesdropper could find discrete logs, she could use gx

1

(mod P) and g to find x, and then use this to obtain gxy (mod P). However, we
assume that discrete logs are hard. While we cannot formally prove that finding gxy

(mod P) from the three values g, gx (mod P), and gy (mod P) is as hard as find-
ing discrete logs modulo P , nobody knows how to do it, and most cryptographers are
convinced that any method for breaking Diffie-Hellman will also serve to find discrete
logs.

How do you find gx (mod P)? One way is to find g2 (mod P), g4 (mod P),
g8 (mod P), and so forth. You can compute each of these quantities by squaring the
previous one mod P , so you can find all of these efficiently. You then write out x in
binary: x = xL−1xL−2 . . . x1x0.

1 g g2 (mod P) g4 (mod P) g8 (mod P) . . . gL (mod P)
x0 x1 x2 x3 x4 . . . xL

Now multiplying the powers g2
i

where xi = 1 will give g
∑

2ixi = gx. Essentially the
same idea was used for the phase estimation algorithm.

How does the quantum discrete log algorithm work? Our presentation of it is based
on phase estimation. This isn’t the original version of the discrete log algorithm, and it
isn’t the version in Nielsen and Chuang, either, but I believe it is simpler than these.

We will be applying the phase estimation algorithm for two unitaries. One of these
is:

Ug : | y (mod P)〉 → | gy(mod P)〉 .
Recall that to make a reversible circuit that doesn’t keep the input around, we need to
have both a circuit for the function and a circuit for the inverse. We can do this. The
number g has an inverse g−1 (mod P), and gg−1 = 1. For example, if P is 31 and g
is 3. then g−1 is 21, because 3 ·21 = 63 ≡ 1 (mod 31). We explained how to compute
g−1 later in a previous set of lecture notes. The inverse of the unitary Ug is:

U−1g : | y (mod P)〉 →
∣∣ g−1y(mod P)

〉
.

Recall also that for the phase estimation algorithm, if we want an accurate approx-
imation of the phase, we need to be able to compute U2k

g . This can be done efficiently:

U2k

g = U
g2k

: | y (mod P)〉 →
∣∣∣ g2ky(9mod P)

〉
,

and we can compute g2
k

(mod P) classically, and use the result to make a quantum
circuit for U

g2k
.

So what are the eigenvectors of Ug? I claim that they are

| vk〉 =
1√
P − 1

(
| 1〉+ e2πki

1
P−1 | g〉+ e2πik

2
P−1

∣∣ g2〉+ e2πik
3

P−1

∣∣ g3〉+ . . . e2πik
P−2
P−1

∣∣ gP−2〉) .
where all the integers in the kets are taken mod P .

What happens when you apply Ug to this state? We get

Ug | vk〉 =
1√
P − 1

(
| g〉+ e2πik

1
P−1

∣∣ g2〉+ e2πik
2

P−1

∣∣ g3〉+ e2πik
3

P−1

∣∣ g4〉+ . . . e2πik
P−2
P−1 | 1〉

)
= e−2πik/(P−1) | vk〉 .

2

Here the last term is | 1〉 because gP−1 = 1. This is true for any generator of the
multiplicative group (mod P) because 1, g, g2, . . ., gP−2 (mod P) must be the numbers
1, 2, . . ., P − 1 in some order.

Now, suppose we take the state | 1〉, apply the phase estimation algorithm, and
measure the second register. We start with

| 1〉 = 1√
P − 1

P−2∑
k=0

| vk〉 .

This is because the amplitude on | 1〉 is just (P − 1)
(

1√
P−1

)2
, and the amplitude on∣∣ g`〉 for ` 6= 0 is 1

P−1
∑P−1
`=0 e2πik`/(P−1), which is a geometric sum that sums to 0.

The phase estimation algorithm estimates the eigenvalue of vk, which is e−2πik/(P−1).
Let’s say the estimate is θk. The phase estimation takes

| vk〉 → | vk〉 | θk〉 ,

where θk is an estimate of − k
P−1 of the form d

2L
.1

Because of round-off error, each | vk〉 will give us several different values of θk =
d
2L

:

| vk〉 → | vk〉
∑
θ
(j)
k

αj

∣∣∣ θ(j)k 〉 .
How far off are these estimates? The analysis of the phase estimation algorithm says
that they will typically be off by a

2L
, where a is a small integer. Thus, in order to be

able to find the right value of k
P−1 , we should take 2L to be at least a small factor grater

than P (2L ≈ 2P probably isn’t good enough, but 2L ≈ 20P should be).
Let us apply the phase estimation algorithm to the state | 1〉 =

∑P−2
k=0 | vk〉. We get

1√
P − 1

P−2∑
k=0

| vk〉
∑
θ
(j)
k

αj

∣∣∣ θ(j)k 〉

Now, if we measure | θk〉, we get each possible value of k between 0 and P − 2 with
equal probability, along with an estimate for k

P−1 , and the first register remains in
the state | vk〉. Thus, we can assume that we have determined k and also have the
eigenvector | vk〉.

Recall that h = gx (mod P), and that we want to find x.

1Strictly speaking, it’s an estimate of 1− k
P−1

, but we can always subtract 1 from it.

3

We claim that | vk〉 is also an eigenvalue of Uh. Why?

Uh | vk〉 = Uh
1√
P − 1

P−2∑
`=0

e2πik`/(P−1)
∣∣ g`〉

=
1√
P − 1

P−2∑
`=0

e2πi`k/(P−1)
∣∣hgk〉

=
1√
P − 1

e−2πikx/(P−1)
P−2∑
`=0

e2πikx/(P−1)e2πik`/(P−1)
∣∣ gxg`〉

=
1√
P − 1

e−2πikx/(P−1)
P−2∑
`=0

e2πik(x+`)/(P−1)
∣∣ gx+`〉 ,

and this last term is just e−2πikx/(P−1) | vk〉.
So what we do is we apply the phase estimation algorithm to the state | 1〉 to get a

random eigenvector | vk〉 and an approximation θ to the phase k
P−1 . We then take the

eigenvedctor | vk〉 that the algorithm gave us, and apply the phase estimation algorithm
to this eigenvector with the unitary Uh. This gives os kx

P−1 . But now,
Now we know k (mod P − 1) and kx (mod P − 1), and we want to find x. How

can we do this? If k and P −1 are relatively prime, we can find k−1 (mod P −1) and
multiply it by kx (mod P − 1) to get x (mod P − 1). For example, suppose we use
the generator 3 for the multiplicative group (mod 31) and are trying to find the discrete
log of 16 (mod 31). We get the numbers k = 7 (mod 30) and kx = 12 (mod 30).
7−1 (mod 30) = 13 because 7 · 13 = 91 = 1 (mod 30). Now, we multiply k−1 by
kx, namely 13 ·12 = 156 = 6 (mod 30), and we have our discrete log. One can check
that 36 = 729 ≡ 16 (mod 31).

What happens when we don’t find a k relatively prime to P − 1? For example,
suppose we got k = 5 and kx = 0. In this case, we can’t divide—for example, if
x = 6 and P − 1 = 30, the numbers x = 6, 12, 18, 24, all give kx = 0 (mod 30).
Here, maybe the simplest thing to do is try again until we find a k that is relatively
prime to P − 1. There are cleverer things to do which will result in our needing to run
the quantum part of the algorithm fewer times ... I’ll leave finding these as an exercise.

4

