
Notes 8.370/18.435 Fall 2022
Lecture 22 Prof. Peter Shor

In this lecture, we talked about the number theory that we needed for the factoring
algorithm..

1 The Euclidean Algorithm and the Extended Euclidean
Algorithm

Let’s recall how we found the factors of N . To make the exposition easier, we will
assume that N is a product of two primes, N = PQ in these notes, but the factoring
algorithm works fine in the general case when more than two primes divide N .

Recall that in order to factor, we found the period of the sequence

g, g2 (mod N), g3 (mod N), . . . .

If the period of this sequence is r, then we must have gr ≡ 1 (mod N). Why?
Because there are at most N − 2 different values in this sequence, we must have
ga = gr+a(mod N) for some a. But then, multiplying by g−a(mod N), we get
1 = gr(mod N).

Now that we have gr ≡ 1 (mod N ), if r is even, we can factor this expression to
get

(gr/2 − 1)(gr/2+1) ≡ 0 (mod N);

We have two numbers multiplying to a multiple of N . If neither of them is a multiple
of N , then we have P must divide one of the numbers and Q the other. Let’s try to
factor 33 in this way. Suppose we take g = 2. We see that 210 ≡ 1 (mod 33), so we
get (25−1)(25+1) ≡ 0 (mod 3). Unfortunately, this doesn’t give us a factor, because
25 + 1 ≡ 33.

So let’s take g = 5. We then have (again) that 510 ≡ 1 (mod N), so (55 −
1)(55 + 1) ≡ 0 (mod 33). We an compute that 55 (mod 33) = 23, so this gives
(23 − 1)(23 + 1) ≡ 0 (mod 33). And this time it worked! 22 contains the factor
11 and 24 contains the factor 3. How do we recover 3 from 24 and 33. We use the
Euclidean algorithm for finding the greatest common divisor of two numbers. How do
we implement this? One standard way is to put the two numbers we start with in a row,
with the larger first. We then repeatedly move the number in the right column to the
left column, and replace the number in the right column by the remainder we get when
dividing these two numbers. For example, to find gcd(24, 9),

33 24
24 9
9 6
6 3

Here, in the first step, we divide 33 by 24, and get remainder 9. In the second step,
we divide 24 by 9 and get remainder 6, and so on. If something divides both of the
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first numbers, it will divide all the other numbers in our array. We keep decreasing the
size of the numbers, so eventually we will reach the greatest common divisor of the
numbers.

Now, let’s look again at our algorithm. We needed to find the period of the unitary
map |y〉 → |gy (mod N)〉. How can we implement this map.

Recall from our discussion of reversible classical computation, that if we have a
classical circuit taking y to gy (mod N) and a circuit take gy (mod N) to y, we can
find a reversible circuit whose input is y (along with some workbits whose initial val-
ues are 0 and whose output is gy (mod N), where the values of the workbits have been
returned to 0. Finding a circuit that takes y to gy (mod N) is easy—it’s just multipli-
cation. But how do we go the other way? What we need to do is find g−1 (mod N) and
then use a circuit for multiplication that takes x to g−1x (mod N). So the only hard
part of this is finding g−1 (mod N). For this, we use something called the extended
Euclidean algorithm.

As an example, let’s find 5−1 (mod 33). The first thing we do is use the Euclidean
algorithm to find the greatest common divisor of 5 and 33. Recall that 5−1 only exists
if this gcd(5, 33) = 1. What we do is divide 33 by 5 to get the remainder 3, and then
repeat with these two numbers—we divide 5 by 3 to get the remainder 2:

33 5 33− 6 · 5 = 3
5 3 5− 1 · 3 = 2
3 2 3− 1 · 2 = 1
2 1

Our next goal is to find two integers s and t such that s · 3 + t · 5 = 1. What we do
is start from the last row and work backwards. In the second to last row, we have that
1 ·3−1 ·2 = 1. What we do is plug in the expression for 2 in the second last row of this
array to get So 1 ·3−1 ·(5−3) = 1, and simplifying this gives 2 ·3−1 ·5 = 1. Now, we
plug in the expression for 3 in the first row of our array, giving 2 ·(33−6 ·5)−1 ·5 = 1.
This simplifies to 2 · 33− 13 · 5 = 1. But from this expression, we can find the inverse
of 5 (mod 33). Since the first term is a multiple of 33, we have −13 · 5 = 1 (mod N),
which gives 5−1 = 33− 13 = 20.

In general, to implement the extended Euclidean algorithm, we start at the last row
given by the Euclidean algorithm and work backwards. Let’s say the first row of the
Euclidean algorithm is r1, r2, the second row r2, r3, and so forth. For each row, we get
an equation rj − qjrj+1 = rj+2. Now, lets say we have found two integers s and t
such that

srj+1 + trj+2 = 1

We plug in our formula for rj+2 into this equation to get

srj+1 + t(rj − qjrj+1) = 1.

Simplifying this will give us s′ and t′ so that s′rj + t′rj+1 = 1. when we reach the top
row, we have sr1 + tr2 = 1. This means that t = r−12 (mod r1).
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2 Continued Fractions
First, we’re going to go through an example to show how the continued fraction algo-
rithm works. After that, we will prove some properties of it.

Let’s use 33 as the example number we want to factor. We first pick a number g
and find the period of gx (mod 33). Recall that if we chose g = 5, the period was
10. We will need to choose L ≈ 2 logN in the phase estimation algorithm. What the
phase estimation algorithm finds is an estimate of the eigenvalue of e2πik/10 for some
k, let’s say k = 3. The phase estimation algorithm then returns a number of the form
d/2Lthat is close to 3/10. Let’s choose 2L = 2048. Then the approximation for 3/10
would have a denominator of 2048. Let’s say this approximation is 615/2048. How do
we recover 3/10 from 615/2048?

What we do is use continued fractions. A continued fraction is a number of the
form

1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

Taking the continued fraction of 615/2048, we find that

a1, a2, a3, a4, a5, . . . = 3, 3, 33, 1, 5.

How did we find this? We start by dividing 2048 by 615, and get 3, with remainder
203 This shows us that

615

2048
=

1

3 +
203

615

and so forth.
We now proceed by finding the continued fraction of 203

615 . Since 615 = 3 · 203+9,
this gives

1

3 +
203

615

=
1

3 +
1

3 +
6

203
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Continuing this process, we get

615

2048
=

1

3 +
203

615

=
1

3 +
1

3 +
6

203

=
1

3 +
1

3 +
1

33 +
5

6

=
1

3 +
1

3 +
1

33 +
1

1 +
1

5

The property of continued fractions that we will be using is that all the best approx-
imations of a real number R by a rational number are the convergents of the continued
fractions for the number. What are the convergents? With the example above, the first
few convergents are:

1

3
=

1

3
= 0.3333,

1

3 +
1

3

=
3

10
= 0.3,

1

3 +
1

3 +
1

33

=
100

333
= 0.3003003,

You can see that these values keep getting closer to 615/2048 = .300293. The third
convergent has a denominator of 333, which is clearly too large when we’re factoring
33, so the right convergent to choose is the second one, which has 10 as the denomina-
tor, and which gives us the correct factorization.

The remaining thing to do is to show that all the close approximations to a fraction
are convergents of its continued fraction. We will show:
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Theorem 1 if |R− p
q | ≤

1
2q2 , then p

q is one of the convergents of r.

How do we show this theorem? We will first prove a lemma:

Lemma 1 Suppose p
q < R < p′

q′ and pq′ = 1 + p′q With these conditions if q < q′,

then p
q is one of the convergents of R, and if q′ < q, then p′

q′ is one of the convergents
of R.

Let’s take as an example R = 615/2048 ≈ .30030293. We have

3

10
= 0.3 < 615/2048 = 0.30030293 <

10

33
= 0.30303.

We can easily check that 3 · 33 + 1 = 10 · 10 This shows that 3
10 is a convergent. ( 33

100
is not, although it is something called a semiconvergent).
Proof of Lemma:
First, let’s look at the continued fractions for p

q and p′

q′ . I claim that they cannot be of
the forms

p

q
=

1

a+
1

b+ . . .

and
p′

q′
=

1

a′ +
1

b′ + . . .

with a > a′. Suppose they were. Then the fraction
1

a
would be between p

q and p′

q′ , and

would have a lower denominator than either, and it would be impossible for p
′

q′ −
p
q =

1
qq′ . Thus, p′ and q′ both must start with a = a′. Now, let’s consider the continued
fractions

p

q
=

1

a+ b
c

and
p′

q′
=

1

a+ b′

c′

We will show p′q − pq′ = 1 if and only if b′c− bc′ = 1.
First, we calculate

p

q
=

c

ac+ b
and

p′

q′
=

c′

ac′ + b′

so
p′q − pq′ = c(ac′ + b′)− c′(ac+ b) = b′c− bc′.

What this shows is that if the two continued fractions

p

q
=

1

a+
1

b+
1

c+ . . .

and
p′

q′
=

1

a′ +
1

b′ +
1

c′ + . . .

,
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satisfy |p
′

q′ −
p
q | =

1
qq′ , then the continued fractions

r

s
=

1

b+
1

c+ . . .

and
r′

s′
=

1

b′ +
1

c′ + . . .

,

satisfy | rs−
r′

s′ | =
1
ss′ . We can in this way keep removing the first terms of the continued

fractions and preserve the relation between the remaining terms. When can this process
end? It can only end when one of the two continued fractions has been reduced to the
form 1

a . At this point, the other continued fraction must look like

1

a+
1

b+ . . .

,

so the first continued fraction is a convergent of the second one. And since R is sand-
wiched between them, the first continued fraction must also be a convergent of R.

We now use the lemma to prove the theorem. Suppose that p
q < R (the case

of p′

q′ > R is completely analogous) and that R − p
q < 1

2q2 . Now, p
q must be the

closest fraction to R with denominator at most q, because the closest two fractions
with denominator less than or equal to q can be to each other is 1

q(q−1) . There must
also be a smallest fraction larger than p

q with denominator at most q. Call this fraction
p′

q′ . Because there are no fractions between p
q and p′

q′ with denominator at most q, we
must have pq′ + 1 = p′q. And we must have

p

q
< R <

p′

q′

Let’s consider the fraction p+p′

q+q′ . We have

p+ p′

q + q′
− p

q
=

q(p+ p′)− p(q + q′)

q(q + q′)

=
p′q − q′p

q(q + q′)

=
1

q(q + q′)
>

1

2q2

This is larger than the distance between p
q and R, so R must be between p

q and p+p′

q+q′ .
And clearly the denominator q is less than the denominator q + q′. This shows that
p
q satisfies the conditions of the Lemma to be a convergent of R, and we have proved
Theorem 1.

3 The Chinese Remainder Theorem
Recall that I said that the probability of finding an r such that gcd(ar/2 ± 1, N) gave
you a factor was at least 1

2 . Why is this true? You need the Chinese remainder theorem
to prove this.
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What is the Chinese remainder theorem? It says that if you have a product N =
PQ, and if P and Q sre relatively prime, then there is a one-to-one correspondence
between numbers modulo N and pairs of numbers modulo P and Q. That is, we have
a correspondence between

xmod N ←→
(
xmod P, xmod Q)

Let’s take 77 = 7 · 11 as an example. Suppose we have the number 60 mod 77. We
want the pair (x, y) corresponding with 77. We find this pair by finding the remainder
when 60 is divided by 7 and 11, respectively. Thus 53↔ (4, 6). There is a polynomial-
time algorithm to go the other way; that is, from the pair (2, 8), it is possible to find
30 mod 77, but we won’t cover this calculation in these notes.

How does r for some a depend on a mod P and a mod Q? It turns out that 3 is
a multiplicative generator modulo 7 and 2 is a multiplicative generator mod 11. Let’s
use this to make a table of the numbers modulo 7 and 11. For a number x, we let r7(x)
and r11 be the smallest power to which we have to raise x to get 1.

power of 3 xmod 7 r7
31 3 6
32 2 3
33 6 2
34 4 3
35 5 6
36 1 1

power of 2 xmod 11 r11
21 2 10
22 4 5
23 8 10
24 5 5
25 10 2
26 9 5
27 7 10
28 3 5
29 6 10
210 1 1

You can see from a little thought that if g is a generator of the multiplicative group mod
P , then for a = gx, rP = P − 1 if and only if gcd(x, P − 1) = 1.

How do we combine the r7 and r11 to get r77. For a number to be 1 mod 77, it
has to be 1 both mod 7 and mod 11. Thus, we need to take the least common multiple
(lcm) of r7 and r11. For example, let’s look at the number 53 ←→ (4, 6). From the
table, we need 43 to make it 1 mod 11 and 610 to make it 1 mod 11. Thus, if we
choose a = 53, we get r = lcm(3, 10) = 30. So what is 5315. It corresponds to
415 ≡ (43)5 ≡ 1 (mod 7) and 615 ≡ 61065 ≡ 65 ≡ −1 (mod 11). Thus, 5315 6= ±1,
and will it give us a factor.

If we had chosen a = 30 ←→ (2, 8), we would get r7 = 3 and r11 = 5. Then,
r = 15 so it is not even, and thus it doesn’t work.

How about a = 6 −→ (6, 6)? Then we get r7 = 2 and r11 = 10. Thus, r = 10.
We can see from the table that 610 ≡ 1 mod 11, so 65 mod 11 is a square root of 1.
There is only one square root of 1 modulo any prime P , so 65 ≡ 1 mod 11. Similarlly,
65 ≡ −1 mod 7, so 65 ≡ −1 mod 77, and we don’t find a factor.

What are the conditions for giving a factor for a general N = PQ, with P and Q
prime? r cannot be odd, and ar/2 cannot be −1. We have r is odd if and only if rP (a)
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and rQ(a) are odd, so 2 doesn’t divide either rP (a) and rQ(a). Put another way, the
largest power of 2 dividing rP (a) (and rQ(a)) is 0.

Now, if ar/2 = −1 modulo both P and Q, it must be the case that the same largest
power of 2 divides both rP and rQ. To see this, consider an example. if rP (a) = 4s
and rQ(a) = 2t, where s and t are odd, then r = lcm(rP , rQ) = 4lcm(s, t). And
a2lcm(rP ,rQ ≡ −1 mod P but a2lcm(rP ,rQ ≡ 1 mod P . So an a will result in a factor
if and only if the largest powers of 2 dividing rP and rQ are different.

Now consider an arbitrary P and a generator g for it. For a = gx mod P , if x is
odd, then the largest power of 2 dividing P − 1 is the largest power of two dividing
rP (a), and if g is even, the largest power of 2 dividing rP (a) is smaller than the largest
power of 2 dividing P − 1. Thus, if a is chosen at random, the largest powers of 2
dividing rP (a) and rQ(a) are the same with probability at most 1

2 , and we see that a
random a works with probability at least 1

2 .
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