
Notes 8.370/18.435 Fall 2022
Lectures 21 Prof. Peter Shor

The first quantum computer algorithm that really caught people’s attention was the
quantum factoring algorithm. This was in part because the security of many applica-
tions on the internet depended on the hardness of factoring. In particular, the RSA
(Rivest-Shamir-Adleman) public key cryptosystem is based on the hardness of factor-
ing. The receiver multiplies two large primes P and Q and tells everybody the number
N . To encode a message, you only need N , but to decode it, you need to know P and
Q. Thus, two people can communicate securely over a public channel without hav-
ing any shared secrets in advance. In our lecture today, we will assume that we know
a product of two primes: N “ PQ, and want to factor it. The factoring algorithm
works just as well on a product of more than two primes, so this restriction is only for
pedagogical reasons.

How did I discover the factoring algorithm? It was a lot more convoluted than I am
going to make it sound, but the basic idea is that Simon’s algorithm uses period-finding
over Zn2—it finds a c such that fpxq “ fpx ‘ cq. It turns out that period finding over
Z is a key ingredient in the factoring algorithm—find a c such that fpxq “ fpx ` cq.
Simon’s algorithm uses the Hadamard transform to do it, but the Hadamard transform
is the Fourier transform over Zn2 . To find periods over Z, we can use the Fourier
transform over Z2n .

Today, we will start on the factoring algorithm. How do factoring algorithms work
in general?. They use many different methods, but one technique used by both the
quantum factoring algorithm and the quadratic sieve (the second best classical factoring
algorithm), is to find two numbers such that A2 ” B2 pmod Nq but where A ı ˘B
pmod Nq. (Here x ” y pmod Nq means that y ´ x is a multiple of N .) If we have
this, then we have pA´BqpA`Bq ” 0 pmod Nq which means

pA´BqpA`Bq is a multiple of N

However,N doesn’t divide eitherA´B orA`B, so one of P orQmust divideA´B
and the other one must divide A ` B. This means we can recover the two primes P
and Q.

How do we recover P (or Q) from A ´ B? We take the greatest common divisor
of N and A ´ B using the Euclidean algorithm, which we will explain in the follow-
ing lecture notes. (In order not to keep interrupting our description of the factoring
algorithm, we are postponing all the number theory to the following lecture notes.)

But how do we find the two numbers A and B? This is where we use the period-
finding algorithm.

Let’s look at the function fpxq ” ax pmod Nq. This gives

1, a, a2 pmod Nq, a3 pmod Nq, . . . , ak pmod Nq.

Eventually, because there are only a finite number of residues moduloN , this sequence
will start repeating. We will get ak ” ak`r pmod Nq. If a is relatively prime to N ,
then we can divide both sides by ak and get ar ” 1 pmod Nq. Thus, r is the period of
this sequence.

1

Now we have ar ” 1. If r is even, this gives

´

ar{2
¯2

” 12 pmod Nq,

and we can hope ar{2 ‰ ´1 pmod Nq. If it isn’t then we have a potential factor. And
if it is, we were unlucky and can try again. It is possible to show that repeating this
method for different values of a will almost certainly give a factor within a polynomial
number of trials. Again, we will postpone this discussion to the next lecture notes.

Let’s do an example. Let’s try to factor N “ 33. You probably already know this
factorization, P “ 11 and Q “ 3. But we’ll see how the algorithm does it.

First, let’s choose a “ 2. We get, for ak pmod Nq:

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1 2 4 8 16 32 31 29 25 17 1

So we have a10 ” 1 pmod 33q so pa5 ` 1qpa5 ´ 1q ” 0 pmod 33q Unfortunately, it
doesn’t work this time because we chose the wrong value of a: since 25 ` 1 ” 33, so
we don’t get a factor.

Let’s try a “ 5:

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1 5 25 26 31 23 16 14 4 20 1

This time, again a10 ” 1. But now a5 ” 23, and p23 ´ 1qp23 ` 1q “ 0 pmod33q.
However, now 23´ 1 is a multiple of P “ 11 and 23` 1 is a multiple of Q “ 3.

So how do we find the period of a sequence? One way we can do this is to use a
unitary transformation that takes us from one element of the sequence to the next. In
this case, the function is simple

Ua |y pmod Nqy “ |ay pmod Nqy .

We need to implement this function reversibly on a quantum computer. For that,
we need a´1 pmod Nq. Here, a´1 is the residue modulo N such that a´1a ” 1
pmod Nq. Recall that to implement a reversible computation that took the input to
the output without leaving any extra non-constant bits around, we needed to be able to
compute both the function and its inverse.

Now, we can find classical circuits for computing

Va |y pmod Nqy |0y “ |y pmod Nqy |ay pmod Nqy

and its inverse,

Va´1 |ay pmod Nqy |0y “ |ay pmod Nqy |y pmod Nqy ,

so we can combine them to get the unitary transform Ua above.
Recall that to apply the phase estimation algorithm, we need to be able to perform

the unitaries U2
a , U4

a , U8
a , and so forth. We can do this: U2

a is just Ua2 pmod Nq, U4
a is

2

just Ua4 pmod Nq and in general, U2k

a is just U
a2k pmod Nq

. We can find a2
k

pmod Nq

by repeatedly squaring a to get a2, a4, a8, . . . pmod Nq. We can thus implement
U
a2k

, and so can do phase estimation.
What are the eigenvectors and eigenvalues of Ua? Consider the quantum state

(leaving out the (mod N)’s to save space)

|ζky “
1
?
r

´

|1y ` e2πik{r |ay ` e4πik{r
ˇ

ˇa2
D

` . . . e2πpr´2qk{r
ˇ

ˇar´2
D

` e2πpr´1qk{r
ˇ

ˇar´1
D

¯

What happens when we apply Ua? We get

Ua |ζky “
1
?
r

´

|ay ` e2πik{r
ˇ

ˇa2
D

` e4πik{r
ˇ

ˇa3
D

` . . . e2πpr´2qk{r
ˇ

ˇar´q
D

` e2πpr´1qk{r |ary
¯

,

and because |ary “ |1y, this Ua |ζky is e´2πk{r |ζky. So we have found r eigenvectors
ofUa. If we had one of these eigenvectors, we could use the phase estimation algorithm
to approximate its eigenvalue, which would give us an approximation to k{r. This
would, hopefully, give us r. But we don’t actually have one of these eigenvectors.
What do we do?

What we do is use the phase estimation algorithm anyway. If we are trying to factor
an L-bit number, we will use the phase estimation algorithm and the quantum Fourier
transform with 2L qubits. This will actually measure the eigenvector, along with its
eigenvalue, and once it is measured, we will get a state very close to |ζky for some k,
and the phase estimation algorithm will give us a good approximation of k{r in the
form of d{22L for some d. From this, we will be able to find r. More specifically, the
phase estimation algorithm will give us d{22L which is very close to k{r.

Why do we need to approximate the phase to 2L bits? We are trying to find k{r,
and each of k and r is at most L bits, since N is at most L bits. Thus, we need 2L bits
to have enough information to determine k and r. We can now use a classical number
theory algorithm, called continued fractions, to round d{22L to k{r (in loweat terms).
This number theory algorithm will also be described in more detail in the next lecture
notes.

Exactly how does this work? We start the algorithm in the state |1y. Note that

|1y “
1
?
r

r´1
ÿ

k“0

|ζky .

This means that when we apply the phase estimation algorithm, we will get a random
|ζky, and the eigenvalue e´2πik{r. The phase estimation algorithm returns a fraction
d{22L close to k{r, and much of the time this fraction can be used to find r.

3

