
Notes 8.370/18.435 Fall 2022
Lecture 20 Prof. Peter Shor

Last time, I explained how to construct the circuit for the quantum Fourier transform,
but I left one piece out. Today, we finish that piece.

Today, we will also look at one of the applications of the quantum Fourier trans-
form: phase estimation. Later, we will use this to show how to factor and take discrete
logs on a quantum computer, rather than using the quantum Fourier transform directly
(which was the way these algorithms were originally discovered).

Recall that the quantum Fourier transform takes

|jy ÝÑ
1

2L{2

2L´1
ÿ

k“0

e2πijk{2
L

|ky (1)

To derive the circut for the QFT, we needed to rewrite this as

|j1y |j2y . . . |jLy Ñ
p|0y ` e2πi0.jn |1yqp|0y ` e2πi0.jn´1jn |1yq . . . p|0y ` e2πi0.j1j2...jn |1yq

?
2L

,

where j1 is the most significant bit of j and jn is the 1’s bit of j, where

0.j1j2 . . . jn “
1
2j1 `

1
4j2 `

1
8j3 ` . . .`

1
2n jn,

and where the qubits on the righthand side are |k1y, |k2y, . . ., |kny.
How do we derive this expression? We start by plugging in the binary expressions

for j and k into Eq. 1:

|j1y |j2y . . . |jLy ÝÑ
1

2L{2

2L´1
ÿ

k“0

e2πi2
Lp

řL
s“1

1
2s jsq2

Lp
řL

t“1
1
2t
ktq{2L |k1y |k2y . . . |kLy

“
1

2L{2

2L´1
ÿ

k“0

e2πi
řL

t“1pkt2
L´tp

řL
s“1

1
2s jsqq |k1y |k2y . . . |kLy

We next express the sum on the righthand side as a tensor product:

|j1y |j2y . . . |jLy ÝÑ
1

2L{2

1
ÿ

k1“0

1
ÿ

k2“0

. . .
1
ÿ

kL“0

L
â

t“1

´

e2πikt2
L´t řL

s“1
1
2s js |kty

¯

Now, because the exponential of an integer times 2πi is 1, we can start the sum in the
exponent, 2L´t

řL
s“1

1
2s js, with s “ t rather than s “ 1. But

e2πi2
L´t řL

s“t
1
2s js “ e2πi0.jtjt`1...jL

So this gives

|j1y |j2y . . . |jLy ÝÑ
1

2L{2

1
ÿ

k1“0

1
ÿ

k2“0

. . .
1
ÿ

kL“0

L
â

t“1

`

e2πikt0.jtjt`1...jL |kty
˘

.

1

However, the value of the term for |kty in this expression depends only on whether
|kty “ |0y or |kty “ |1y. We can thus use the distributive law of tensor products over
sums to rewrite it as

|j1y |j2y . . . |jLy ÝÑ
1

2L{2

L
â

t“1

`

|0y ` e2πi0.jtjt`1...jL |1y
˘

,

which is what we were trying to derive.
What is quantum phase estimation? Suppose we have a unitary operator U and

an eigenvector |vθy of this operator. The phase estimation problem is to give an ap-
proximation to the eigenvalue associated with |vθy, that is, to approximate the θ such
that

U |vθy “ eiθ |vθy .

The phase estimation algorithm does not give very accurate estimates of θ unless
you can take high powers of U . Thus, we will assume that we have some kind of circuit
that will compute U2` in polynomial time in `. Is this a reasonable assumption? There
are cases for which it is. Suppose the unitary takes a number s pmod pq and multiplies
it by a number g pmod pq, so

U |s pmod pqy “ |gs pmod pqy

Then Uk simply multiplies a number s by gk pmod pq,

Uk |s pmod pqy “
ˇ

ˇgks pmod pq
D

,

and if we know gk pmod pq, Uk is essentially no harder to implement than U . We
will use this unitary transformation in the factoring algorithm, and we will discuss it in
more detail then.

What is the basic idea of the algorithm? What we will do is create the state

1

2L{2

2L´1
ÿ

k“0

eikθ |ky (2)

Now, recall that the quantum Fourier transform maps

|jy ÝÑ
1

2L{2

2L´1
ÿ

k“0

e2πijk{2
L

|ky

And since on the left-hand side, the states |jy form a basis, so do the states on the
rigith-hand-side. But if θ “ 2πm{2L for some integer m, it’s one of these basis states,
and thus to identify θ, all we need to do is measure in that basis. How do we do that?
We take the inverse Fourier transform, which takes

1

2L{2

2L´1
ÿ

k“0

e2πijk{2
L

|ky

2

to |jy, and then measure in the standard basis. Thus, if we get j, we know that θ “
2πj{2L.

To complete this sketch of the algorithm, we need to do two things. First, we need
to show how to create the state (2). Second, we need to show that the algorithm works
even if θ is not an integer multiple of 2π{2L.

We first explain how to create the state (2). Let’s assume that we know how to
implement the transformation U2k efficiently (in polynomial time, if we want the en-
tire algorithm to be polynomial-time). Now, consider the following quantum circuit.

. . .

. . .

. . .

. . .

. . .

. . .

|kL´1y

|kL´2y

...
|k2y

|k1y

|k0y

|vθy U U2 U4 U2L´2

U2L´1

If the input is k “ kL´1kL´2 . . . k1k0 in binary, this circuit appliesUk0`2k1`4k2`...`2L´1kL´1

to |vθy, which is the same as applying Uk |vθy “ eikθ, we have the output of |ky eiθk.
Thus, to get our desired state

1

2L{2

2L´1
ÿ

k“0

eikθ |ky |vθy , (3)

we simply need to input

1

2L{2

2L´1
ÿ

k“0

|ky |vθy

into the circuit above. We can do this by putting a |`y state into each of the first L
quantum wires.

Next, we will compute what happens when we take the above state and apply the
inverse Fourier transform to it, even in the case where θ is not an integer multiple of
2π{2L. The inverse Fourier transform is

|ky ÝÑ
1

2L{2

2L´1
ÿ

j“0

e´2πijk{2L |jy ,

so when we plug it into (3), we get

1

2L

2L´1
ÿ

k“0

eikθ
2L´1
ÿ

j“0

e´2πijk{2L |jy “
1

2L

2L´1
ÿ

j“0

|jy

¨

˝

2L´1
ÿ

k“0

eikpθ´2πj{2Lq

˛

‚

3

The last piece is a geometric sum, so we can use the formula for geometric sums, and
show that the probability of seeing |jy is

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2L

2L´1
ÿ

k“0

eikpθ´2πj{2Lq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
1

4L

ˇ

ˇ

ˇ

ˇ

ˇ

1´ eip2
Lθ´2πjq

1´ eipθ´2πj{2Lq

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

We now show that the value of j we obtain will give us a very good approximation
of θ. There are more accurate ways of doing this than the one we use, but this one
is fairly simple. will bound the numerator by 2, and approximate the denominator by
ipθ ´ 2πj{2Lq. Let j1 be the value (not necessarily an integer) which would give the
right value of θ, that is the j1 that makes 2πj1{2L “ θ. We see that the probability of
seeing some specific j with j ą j1 ` α or j ă j1 ´ α is at most around

1

4L

ˇ

ˇ

ˇ

ˇ

2

2πpj1 ´ jq{2L

ˇ

ˇ

ˇ

ˇ

2

ď
1

|πα|2
.

This shows that j is very tightly concentrated around 2Lθ{p2πq, and thus we can get a
good estimate of the phase θ.

By looking at the phase estimation algorithm, you can see that if you input an
eigenvector of the transformation U , the phase estimation circuit does not change this
eigenvector. This will be quite important in our later applications of phase estimation.

4

