
Notes 8.370/18.435 Fall 2022
Lecture 19 Prof. Peter Shor

In class, I Ialked a little bit about Fourier series and the discrete Fourier transform,
to give some motivation for the quantum Fourier transform. In the interest of getting
these lecture notes out on time, I’m not going to put these into the notes right now (I
actually did the same thing last year). I may come back and revise it.

The quantum Fourier transform will be very useful in a number of quantum algo-
rithms, which we will be covering in class. Namely, we will use them in the phase
estimation, the factoring, and the discrete logarithm algorithms.

The quantum Fourier transform is very similar to the discrete Fourier transform.
The Fast Fourier Transform (FFT) is an algorithm for computing the discrete Fourier
transform, and if you’ve seen the FFT (and you remember it), you will realize that it
shares many elements with the quantum Fouriet transform. In fact, the discrete Fourier
transform takes the amplitudes of the input to the quanutm Fourier transform to the
amplitudes of the output.

The quantum Fourier transform takes input |jy to

|jy ÝÑ
1
?
n

n´1
ÿ

k“0

e2πi jk{n |ky .

The inverse transform takes

|ky ÝÑ
1
?
n

n´1
ÿ

j“0

e´2πi kj{n |jy .

In matrix form, this is

MFT “
1
?
n

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωn´1

1 ω2 ω4 ω6 . . . ωn´2

1 ω3 ω6 ω9 . . . ωn´3

...
...

...
...

...
1 ωn´1 ωn´2 ωn´3 . . . ω

˛

‹

‹

‹

‹

‹

‹

‹

‚

where ω “ e2πi{n. Note that M : “M´1 is just M with ω replaced by ω´1.
The reason the quantum Fourier transform works is that

n´1
ÿ

k“0

ωk` “

#

n if ` is a multiple of n

0 otherwise
. (1)

This is not hard to prove. If ` is a multiple of n, all the terms in the sum are 1, and the
sum is n. If ` is not a multiple of n, we have a geometric series, and the sum is

n´1
ÿ

k“0

ωk` “

`

ω`
˘n
´ 1

ω` ´ 1
“ 0,

1

because ωn “ 1. Note that Eq. (1) shows that M is unitary.
In this lecture, we will be taking n “ 2L, as the quantum Fourier transform is

particularly easy to implement in this case. The quantum Fourier transform presented
above is an L-qubit gate. For large L, experimental physicists cannot hope to build an
apparatus that takes L qubits and makes them interact so as to execute an arbitrary L-
qubit gate.1 So to implement multi-qubit unitary transformations efficiently, we need
to break them into a sequence of 1- and 2-qubit gates. How can we break the quantum
Fourier transform into 1- and 2-qubit gates? It turns out that we only need to use two
kinds of gates, the first is a Hadamard gate and the second is a controlled Rj gate,

where j = 2, 3, 4, . . ., L. Here Rj “

ˆ

1 0

0 e2πi{2
j

˙

.

What we will do is represent |jy and |ky as sequences of qubits. Let j “ j1j2j3 . . . jL
in binary, and let k “ k1k2k3 . . . kL. Thus,

j

n
“

L
ÿ

s“1

1

2s
js and

k

n
“

L
ÿ

t“1

1

2t
kt

Recall that the quantum Fourier transform takes

|jy ÝÑ
1
?
2L

ÿ

k

e2πijk{2
L

|ky (2)

We will use the binary decimal notation

0.a1a2a3 . . . “
1

2
a1 `

1

4
a2 `

1

8
a3 ` . . .

and rewrite Eq. 2 as

|j1y |j2y . . . |jLy Ñ
1
?
2L
p|0y`e2πi0.jL |1yqp|0y`e2πi0.jL´1jL |1yq . . . p|0y`e2πi0.j1j2...jL |1yq

There are two things to show. First, we will show how this rewriting lets us find a
circuit for the QFT, and second, why we are allowed to rewrite it like this.

How can we use this to find a circuit? First, let’s divide the 1?
2L

normalization
constant equally among the terms on the righthand side. Now, let’s think about the first
term

1
?
2
p|0y ` e2πi0.jn |1yq.

Here 0.jn is either 0 or 1{2, so this exponential is either 1 or ´1. We thus have that
if |jny “ |0y, this term is 1?

2
p|0y ` |1yq and if |jny “ |1y, this term is 1?

2
p|0y ´ |1yq.

Now, we know a gate that implements this transform on |jny— the Hadamard gate. It
turns out that this Hadamard gate needs to be the last thing we do in our circult. Let’s
think about the second term next. What we need to implement is

|jn´1y Ñ p|0y ` e2πi0.jn´1jn |1yq

1Note that the same thing holds for classical computers ... we implement L-bit Boolean functions not by
building special transistors for them, but by breaking them down into NOT, AND, and OR gates, so we only
ever have to build 2-bit gates.

2

How can we implement this? The first thing we do is take

|jn´1y Ñ p|0y ` e2πi0.jn´1 |1yq

We’ve nearly got it. After applying this, what we need to do is if both |jny “ |1y and
this qubit we’ve just transformed (which will end up being |k2y, is |1y, then we need to
multiply the phase by e2πi{4 “ i. We can do this—it’s just the gate R2. But note that
we need to have the qubit |jny available for this, which is why we need to process |jny
last.

We’ve worked out how to implement the first two terms. The circuit for this is

|j1y H R2 |k2y

|j2y H |k1y

where R2 is the gate
ˆ

1 0
0 i

˙

. Note how we need to process |j1y first so that we

have |j2y available when we’re processing |j1y.
Now, we can explain how to produce an arbitrary term in the above product. This

is
|jsy Ñ

1
?
2
p|0y ` e2πi0.jsjs`1...jL |1yq

We first apply a Hadamard gate to take

|jsy Ñ
1
?
2
p|0y ` e2πi0.js |1yq

We then apply C-R2, C-R3, C-R4, C-RL´s`1 gates between this qubit and the qubits
js`1, js`2, . . ., jL to take

1
?
2
p|0y ` e2πi0.js |1yq Ñ

1
?
2
p|0y ` e2πi0.jsjs`1...jL |1yq

This gives us the circuit, which we give here for L “ 4 It should be easy enough for
you to see the generalization to arbitrary L, but if you want to see it explicitly, the
circuit for the general case is given in the textbook (p. 219).

.

|j1y H R2 R3 R4 |k4y

|j2y H R2 R3 |k3y

|j3y H R2 |k2y

|j4y H |k1y

Note that the output qubits come out in reverse order as the input qubits.

3

Note also that reversing the circuit gives exactly the same gates, (the circuit is
symmetric if you flip top and bottom and right and left, because the |kty qubits appear
in the opposite order as the |jsy qubits), except that the complex conjugate is applied.
This shows that the inverse quantum Fourier transform is the complex conjugate of the
quantum Fourier transform, something we already worked out.

There is one final thing I want to say. When people first saw the quantum Fourier
transform circuit, some of them raised the objection that the C-R` gate is so close to
the identity that it couldn’t possibly be doing anything, so there must be something
wrong with the circuit. In fact, they were right about the first part of this—the C-R`
gate hardly changes the state at all. What this means is that you can get a very good
approximate Fourier transform by just ignoring the C-R` gates for moderately large `.
This lets you do approximate quantum Fourier transform with many fewer gates.

4

