
Notes 8.370/18.435 Fall 2022
Lecture 13 Prof. Peter Shor

Today we talked more about density matrices.
There are two ways of obtaining density matrices. One is by having a probabilistic

mixture of states, and the other is by starting with an entangled state and disregarding
(or throwing away) part of it. We explained the first case on Friday. Today, we will
explain the second case.

Let’s do an example before we explain things in general. Suppose we have the state

2
?
5
| 00yAB `

1
?
5
| 11yAB

shared between Alice and Bob. Now, suppose Alice measures her qubit but doesn’t tell
Bob the result. Bob will have a probabilistic mixture of quantum states, i.e., a density
matrix.

FIrst, let’s assume Alice measures her qubit in the t| 0y , | 1yu basis. She gets the
outcome | 0y with probability 4

5 , in which case Bob also has the state | 0y, and she gets
the state | 1y with probability 1

5 , in which case Bob also has the state | 1y. Thus, Bob’s
density matrix (assuming he doesn’t learn Alice’s measurement result) is
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| 0yx0 | `
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5
| 1yx1 | “
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5

ˆ

1 0
0 0

˙

`
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5

ˆ

0 0
010

˙

“

ˆ

4
5 0
0 1

5

˙

.

Now, let’s assume that Alice measures in the t|`y , | ´yu basis. If Alice gets the result
| `y, we have

1
?
2

´

x0 | ` x1 |
¯´

2?
5
| 00yAB `

1?
5
| 11yAB

¯

“
2
?
10
| 0y `

1
?
10
| 1y ,

so Bob’s state is 1
5

`

2 | 0y ` | 1y
˘

with probability 4
10 `

1
10 “

1
2 .

A similar calculation shows that if Alice gets | ´y, then Bob’s state is
1
5

`

2 | 0y ´ | 1y
˘

with probability 1
2 .

Bob’s density matrix in this case is

1

2
¨
1

5

ˆ

4 2
2 1

˙

`
1

2
¨
1

5

ˆ

4 ´2
´2 1

˙

“

ˆ

4
5 0
0 1

5

˙

.

Thus, in this case Bob’s density matrix doesn’t depend on the basis that Alice used for
her measurement. We will later show that this is true in general.

The operation on matrices that gets a density matrix on a state space B (or A) from
a density matrix on the joint state space of A and B. is called a partial trace. Suppose
we have a density matrix ρAB on a joint system AB. If A is a qubit, we can express it
as

ρAB “

ˆ

P Q
R S

˙

,

1



where P , Q, R, S, are matrices on the quantum system B. Now, the partial trace over
A is

TrA

ˆ

P Q
R S

˙

“ P ` S (1)

and the partial trace over B is

TrB

ˆ

P Q
R S

˙

“

ˆ

TrP TrQ
TrR TrS

˙

.

This generalizes in a straightforward way to the case where A is not a qubit. If A has
dimension j and B has dimension k, then ρAB is a j ˆ j array of k ˆ k matrices.
TrAρAB is just the sum of the matrices along the diagonal, and to get TrBρAB , you
take the trace of each of the j2 matrices.

The reason that this is called a partial trace is that if we take the partial trace of a
tensor product matrix, say MA bMB , then

TrApMA bMBq “ pTrMAqMB

TrBpMA bMBq “ pTrMBqMA.

Let’s take the partial trace for the example state we had earlier,

2
?
5
| 00yAB `

1
?
5
| 11yAB

The density matrix is

ρAB “
1

5

¨

˚

˚

˝

4 0 0 2
0 0 0 0
0 0 0 0
2 0 0 1

˛

‹

‹

‚

To get TrAρAB , we add up the 2ˆ 2 matrices along the diagonal, which gives

TrAρAB “
1

5

ˆ

4 0
0 0

˙

`
1

5

ˆ

0 0
0 1

˙

“
1

5

ˆ

4 0
0 1

˙

To get TrBρAB , we take the trace of each of the 2 ˆ 2 matrices in each quadrant.
This gives

TrB ρAB “
1

5

¨

˚

˚

˝

Tr

ˆ

4 0
0 0

˙

Tr

ˆ

0 2
0 0

˙

Tr

ˆ

0 0
2 0

˙

Tr

ˆ

0 0
0 1

˙

˛

‹

‹

‚

“
1

5

ˆ

4 0
0 1

˙

For this case, this turns out to be the same density matrix as we obtained when we
took the partial trace over A’s system, because the original state 2?

5
| 00y ` 1?

5
| 11y is

symmetric in A and B.
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We now give another formula for the partial trace of a quantum state. This formula
can be generalized to take the partial trace over a system that is a tensor product of
more than two subsystems. Suppose you have a basis t| eiyu for system A. Then

TrAρ “
d´1
ÿ

i“0

xei | ρ | eiy (2)

Why does this represent the same matrix as the first formula? What we mean by
xe0 | if the systems are qubits is

xe0 | “ p1, 0q b I2 “

ˆ

1 0 0 0
0 1 0 0

˙

.

And

xe1 | “ p0, 1q b I2 “

ˆ

0 0 1 0
0 0 0 1

˙

.

Thus, if

M “

ˆ

P Q
R S

˙

,

where P , Q, R, S, are 2ˆ 2 matrices, we have

xe0 |M | e0y “ P

and
xe1 |M | e1y “ S,

so summing them gives the formula of Eq. (1).
There is another way of seeing this. If t| eiyu is the standard basis t| 0y , | 1y , . . . , | d´ 1yu,

over system A, then xei | ρ | eiy just picks out the entries with i in the first coordinate of
the matrix ρAB , and summing these gives the sum of the matrices along the diagonal.

Now, we will show that it doesn’t matter which basis you use in the formula (2)
for partial trace, you get the same result for TrA ρ. Suppose we have two orthonormal
bases for system A, t| ejyu and t| fiyu. We can express one basis in terms of the other:

| fiy “
ÿ

αij | ejy .

Since both bases are orthonormal, the length of a vector expressed in the basis t| ejyu
must be the same as the length in t| fiyu. This means that the matrix pαijq is unitary,
since this change of basis preserves the lengths of vectors. Now, we do some algebra:

ÿ

i

xfi | ρ | fiy “
ÿ

i

ÿ

j1

ÿ

j

α˚ij1 xej1 | ρ | ejyαij

“
ÿ

j1

ÿ

j

xej1 | ρ | ejy

˜

ÿ

i

α˚ij1αij

¸
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The term
ř

i α
˚
ij1αij is just the inner product of the columns j and j1, which is δpj, j1q,

i.e., it is 1 if j “ j1 and 0 otherwise. Thus, we have
ÿ

i

xfi | ρ | fiy “
ÿ

j

xej | ρ | ejy ,

which is the formula we wanted to prove.
So this shows that no matter what measurement Alice makes, Bob has the same

density matrix.
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