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Lecture 12 Prof. Peter Shor

Today we started on density matrices.
Suppose we have a probabilistic mixture of quantum states. That is, suppose some-

body prepares the state | v1y with probability p1, the state | v2y with probability p2, the
state | v3y with probability p3, and so on. How can we describe it? It turns out that a
very good way to describe it is with something called a density matrix. If we have a
system that is in state | viy with probability pi, then the density matrix is

ρ “
ÿ

i

pi | viyxvi | .

Density matrices are customarily denoted by the variable ρ.
The density matrix ρ is a Hermitian positive semi-definite trace 1 matrix. Here,

trace 1 means that Tr ρ “ 1. It is easy to see that it is trace 1 because

Tr
ÿ

i

pi | viyxvi | “
ÿ

i

piTr | viyxvi | “
ÿ

i

pi “ 1

The word positive means that it has all non-negative eigenvalues. This is equivalent to
the condition xv | ρ | vy ě 0 for all | vy. It is also easy to see that it is positive because
for any |wy, we have xw|viyxvi|wy ě 0. This means that

xw | ρ |wy “
ÿ

i

pixw|viyxvi|wy ě 0 @ |wy .

In fact, any Herititian positive semidefinite trace 1 matrix ρ is a density matrix for some
probabilistic mixture of quantum states, One way to see this is to use the eigenvectors
of ρ for the quantum states and the eigenvalues for the probabilities.

The difference between a superposition of states and a mixture of states is impor-
tant. A superposition of states is something like

1
?

2
| 0y `

1
?

2
| 1y ,

while a mixed state is

| 0yx0 | with probability
1

2
and | 1yx1 | with probability

1

2
,

which would be represented by the density matrix
ˆ

1
2 0
0 1

2 .

˙

For these two states, if you measure either one in the basis t| 0y , | 1yu, you get | 0y
with probability 1

2 and | 1y with probability 1
2 . But they don’t behave the same. Con-

sider what happens if you apply the Hadamard gate H “ 1?
2

ˆ

1 1
1 ´1

˙

and then
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measure them in the basis t| 0y , | 1yu. (This is equivalent to measuring in the basis
t|`y , | ´yu.) The first one is taken to the state | 0y, and you observe the outcome | 0y
with probabiity 1. The second is taken to the state

| `y with probability
1

2
and | ´y with probability

1

2
,

and you observe the outcomes | 0y and | 1y. with probabiity 1
2 each.

There is another way of computing this result. To apply a unitary U to a density
matrix ρ, you take UρU :. Thus, for the calculation above, we have

H

ˆ

1
2 0
0 1

2

˙

H: “

ˆ

1
2 0
0 1

2

˙

HH: “

ˆ

1
2 0
0 1

2

˙

,

since H commutes with the identity matrix.
One thing to notice is that two different probabilistic ensembles of quantum states

can give the same density matrix. For example, suppose you have the ensembles

(a) 4
5 | 0y `

3
5 | 1y with probability 1

2 and 4
5 | 0y ´

3
5 | 1y with probability 1

2 ,

(b) | 0y with probability 16
25 and | 1y with probability 9

25 .

These both give the density matrix
ˆ

16
25 0
0 9

25

˙

.

So why use density matrices if they don’t give a complete description of the quan-
tum state? The reason is that if you know the density matrix, this is sufficient informa-
tion to tell you the outcome of any experiment on the quantum state. Let’s now give a
demonstration of this fact.

Suppose we use the basis
!

2?
5
| 0y ` 1?

5
| 1y ,´ 1?

5
| 0y ` 2?

5
| 1y

)

to measure the
probabilistic ensemble (a) above. The probability of observing the first basis state is

1

2

ˇ

ˇ

ˇ

`

2?
5
x0 | ` 1?

5
x1 |

˘`

4
5 | 0y `

3
5 | 1y

˘

ˇ

ˇ

ˇ

2

`
1

2

ˇ

ˇ

ˇ

`

2?
5
x0 | ` 1?

5
x1 |

˘`

4
5 | 0y ´

3
5 | 1y

˘

ˇ

ˇ

ˇ

2

,

which is
1

2

ˆ

11

5
?

5

˙2

`
1

2

ˆ

5

5
?

5

˙2

“
73

125

If we do this for the probabilistic ensemble (b), we get

16

25

ˇ

ˇ

ˇ

`

2?
5
x0 | ` 1?

5
x1 |

˘

| 0y
ˇ

ˇ

ˇ

2

`
9

25

ˇ

ˇ

ˇ

`

2?
5
x0 | ` 1?

5
x1 |

˘

| 1y
ˇ

ˇ

ˇ

2

“
64

25
`

9

25
“

73

125

We will see that the formula for the probability of obtaining | vy in a von Neumann
measurement on state ρ is xv | ρ | vy. For the example above,

xv | ρ | vy “
´

2?
5
, 1?

5

¯

ˆ

16
25 0
0 9

25

˙

˜

2?
5
1?
5

¸

“
73

125
.
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To show that the outcome of any experiment depends only on the density matrix,
we need to prove that if you apply a unitary U to a mixture of quantum states with
density matrix ρ, you get a mixture of quantum states with density matrix UρU :, and
that if you perform a measurement on a mixture of quantum states, the density matrix
is enough to predict the outcome. We now show these two facts.

Suppose you have a mixture of quantum states, where | viy has probability pi. Ap-
plying U gives the mixture where U | viy has probability pi. Computing the density
matrix of this mixture gives

ÿ

i

piU | viyxvi |U
: “ U

˜

ÿ

i

pi | viyxvi |

¸

U : “ UρU :,

as we wanted.
Now, suppose we have a mixture of quantum states with density matrix ρ, and we

measure it with the von Neumann measurement corresponding to the basis t|wiyu. The
probability that we see |wjy if we started with state | viy is |xwj |viy|

2 “ xwj |viyxvi|wjy,
so the total probability that we see |wjy

ÿ

i

pixwj |viyxvi|wjy “ xwj |

˜

ÿ

i

pi | viyxvi |

¸

|wjy

“ xwj | ρ |wjy ,

which depends only on ρ and not the pi’s and | viys.
Do these calculations show that density matrices are sufficient to predict all ex-

perimental outcomes from mixed quantum states? Not quite—we haven’t shown that
results of the more general type of von Neumann measurements, with projections onto
subspaces of rank greater than 1, can be predicted from the density matrix. Let’s do
that now.

Recall that a von Neumann measurement has Hermitian projection matrices Π1,
Π2, . . ., Πr with

ř

i Πr “ I . When applied to a quantum state |φy, we observe the rth
outcome with probability

|Πr |ψy |
2 “ xψ |Πr |ψy

and the state after the measurement is

1

|Πr |ψy |
Πr |ψy .

So what is the probability of observing the rth outcome if we have a probabilistic en-
semble of quantum states where | viy appears with probabiity pi. It’s just the weighted
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sum of the probability of each outcome:
ÿ

i

|Πr | viy |
2 “

ÿ

i

pi xvi |Πr | viy

“
ÿ

i

piTr xvi |Πr | viy

“
ÿ

i

piTr Πr | viy xvi |

“ Tr Πr

˜

ÿ

i

pi | viy xvi |

¸

“ Tr Πrρ,

which depends only on the density matrix. For the second and third steps of this calcu-
lation, we used the fact that the trace of a scalar, i.e., a 1 ˆ 1 matrix, is just the scalar,
and the cyclic property of the trace:

TrABC “ TrBCA “ TrCAB

(which is actually a straightforward consequence of TrAB “ TrBA).
What we will do now is compute the residual state we get if we start with vi and

observe the rth outcome, and then compute the conditional probability of having started
with vi, given that we observe the rth outcome. These last two quantities will let us
compute the density matrix, conditional on having observed the rth outcome.

First, the residual state is

Πr | viy

|Πr | viy|
“

Πr | viy

xvr |Πr | viy
1{2
.

The conditional probability that we started with | viy, given that we observe the rth
outcome, can be calculated using Bayes’ rule. This gives:

pi xvi |Πr | viy
ř

i pi xvi |Πr | viy
“
pi xvi |Πr | viy

Tr pΠrρq

The conditional density matrix, given that we observe the rth outcome, is thus.

ρr “
ÿ

i

pi xvi |Πr | viy

Tr pΠrρq
¨

Πr | viy

xvr |Πr | viy
1{2

xvi |Πr

xvr |Πr | viy
1{2

“
Πr p

ř

i pi | viyxvi |qΠr

Tr pΠrρq

“
ΠrρΠr

Tr pΠrρq
,

which depends only on ρ, so we are done. Note that Tr pΠrρΠrq “ Tr pΠrρq, so this
indeed has trace 1, and so is a valid density matrix.
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