
Notes 8.370/18.435 Fall 2022
Lecture 10 Prof. Peter Shor

Today, we continue our discussion of gates permitting universal quantum compu-
tation. Recall that last time we showed how to make an arbitrary controlled Ry or Rz

rotation, using the following circuit.

If the first qubit is a | 0y, then we have Rzp´θqRzpθq applied to the second qubit,
and these two operations cancel each other out. If the first qubit is | 1y, we have Rzpθq
applied to the second qubit, followed by σxRzp´θqσx. This is Rzpθq, which when
multiplied by the first Rzpθq gives Rzp2θq. We thus have a circuit for a C-Rzp2θq.

The same circuit with Rzpθq replaced by Rypθq gives the C-Ryp2θq.
The next thing we want to do is to show how to do a doubly controlled U gate,

where we apply a U if both the first two qubits are | 1y and an identify otherwise. If
we can do a Toffoli gate, we can use the same technique we used for contructing for a
controlled NOT to do this:
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We will not show how to make a Toffoli gate in this lecture; this will be a homework
assignment.

We can construct a doubly controlled unitary CC-U using the same technique we
used to construct a C-U : Find angles α, β, and γ so that U “ RzpγqRypβqRzpαq; we
then have CC´U “ CC´RzpγqCC´RypβqCC´Rzpαq.

We now will construct a Ck-U , a circuit that applies a U gate to the target qubit
if the k control qubits are in the state | 1y, and applies the identity otherwise. This is
accomplished by the following circuit:

Here, we use k ´ 1 extra work qubits which start in the state | 0y. If all the control bits
are | 1y, then the first k´1 Toffoli gates set all the work qubits to | 1y, and a controlled-
U gate applied to the last work bit applies a U to the target qubit. Otherwise, the last
work qubit remains in the state | 0y, and an identity is applied to the target qubit. The
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last k ´ 1 Toffoli gates set all the work bits back to | 0y; this step will be necessary in
quantum computation to make the interference work properly.

We now have constructed enough gates to show how to make an arbitrary unitary
from Rzpθq, Rypθq, CNOT, and Toffoli gates. For this, we will need what the textbook
calls a two-level gate. This is a gate on n qubits which is diagonal except for two rows
and two columns, which contain a 2ˆ 2 unitary matrix in them. An example of such a
gate is:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
1

a b
1

c d
1

1
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where
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is a small unitary matrix.

To show that we can construct an arbitrary matirx U from two-level matrices, we
need to show that we can find two-level matrices Ti so that

T :1T
:
2T

:
3 . . . T

:
m “ U.

We will work backwards, showing that there are two-level matrices T :i such that

UTmTm´1 . . . T1 “ I.

Since the conjugate transpose of Ti (which is also the inverse of Ti, because Ti is
unitary) is a two-level matrix, this will show that U is a product of two-level matrices.

When you multiply U by a two-level matrix, it will only affect two columns and
two rows of U , since a r ˆ r two-level matrix is an identity in r ´ 2 of its rows and
columns. Now, for an arbitrary r ˆ r matrix U , there is a two-level matrix T1 (which
only affects the first and last columns) that sets the lower left entry of UT , UT pr, 1q, to
0. Now that UT1 is 0, we can find another two-level matrix T2 that sets the pr ´ 1, 1q
entry of UT1T2 to 0. If we continue setting entries of UT1T2 . . . Tk to 0, and work from
the lower right up, when we apply a new two-level matrix, we will never undo one of
the zeroes, because we have already set all the entries to the left and below the entry
we are working on to 0. Thus, doing this, we can set all the entries below the diagonal
to 0. Because the length of all rows and columns in a unitary matrix are 1, this means
that all the entries above the diagonal are also 0, and that the diagonal contains unit
complex numbers. These can all be set to 1 by applying another sequence of two-level
matrices.

So how can we construct an arbitrary two-level matrix? We have already con-
structed one class of two-level matrices. If we have n qubits, then the multiply con-
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trolled gate with n´ 1 control qubits and one target qubit looks like:
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We only need to show that we can move the unitary in the last two rows and columns
to an arbitrary pair of rows and columns. We can do this with an appropriate sequence
of NOTs and CNOTS, which we will describe next.

Actually, for ease of exposition, it’s better to put the unitary matrix
ˆ

a b
c d

˙

at

the top left of the matrix rather than the bottom right. We can do that by applying a
NOT gate to all but the last qubit, giving this matrix.
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Now, suppose we want to construct the matrix M2,4 where the unitary is in rows
and columns 2 and 4, rather than 0 and 1.
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What we can do is construct a permutation matrix P that takes the basis vector
| e2y “ | 010y to the basis vector | e0y “ | 000y and the basis vector | e4y “ | 100y to
basis vector | e1y “ | 001y, and then use P to construct M2,4 by applying P´1M0,1P .
The matrix P´1M0,1P only affects the | 010y and the | 100y coordinates of a vector v,
because the P 1 undoes everything that M0,1 does not affect.

So how do we move two arbitrary basis vectors to | 000y and | 001y? We will give
a proof by example; once you’ve seen how it works for two specific basis vectors,
extending the procedure to an arbitrary two basis vectors is straightforward. What we
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want to do is to move the basis vectors | 010y and | 100y to the basis vectors | 000y and
| 001y. We use NOTs and CNOTs for this. First, we can move the coordinate | 010y
to | 000y by applying a NOT gate to the second qubit. Applying this NOT gate takes
| 100y to | 110y. We next take | 110y to | 001y by applying CNOT gates. These CNOT
gates do not affect | 000y, because it contains all 0s. We can do this as follows:

CNOT1,3 | 110y “ | 111y

CNOT1,2 | 111y “ | 101y

CNOT3,1 | 101y “ | 001y .

we thus have constructed P , and this lets us produce M2,4. So we are done.
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