
Notes 8.370/18.435 Fall 2022
Lecture 8 Prof. Peter Shor

Today we continue discussing classical Boolean circuits.
Quantum mechanics is reversible. Because of this, we will study quantum circuits

that are made up from reversible quantum gates. We thus first need to study classical
reversible circuits. Reversible circuits are made from reversible gates, both to shed
light on reversible quantum circuits, and because we will be using reversible classical
circuits as subroutines in our quantum algorithms. Last time we saw that any two-
bit reversible gates can be made from NOT, CNOT, and SWAP gates (in fact, we don’t
need the SWAP gate). While two-bit classical gates are sufficient for universal classical
computation, two-bit reversible classical gates are not. We will see this later in this
class.

There are, however, three-bit gates that are universal. One of these is the Toffoli
gate (discovered by Tom Toffoli, who worked at MIT at the time). This gate negates
the third bit if the first two are both 1. It can thus be described as

x1 “ x

y1 “ y

z1 “ z ‘ px^ yq,

where ‘ is binary addition, or XOR. Its truth table is
variables

x, y (in) x1, y1 (out)
0,0,0 0,0,0
0,1,0 0,1,0
1,0,0 1,0,0
1,1,0 1,1,1
0,0,1 0,0,1
0,1,1 0,1,1
1,0,1 1,0,1
1,1,1 1,1,0

We show that together with the NOT gate, the Toffoli gate is universal for reversible
computation. How do we prove this? What we do is that we show that the Toffoli gate
can simulate AND, and FANOUT gates. More specifically,

AND : T px, y, 0q “ p0, 0, x^ yq

FANOUT : T p1, x, 0q “ p1, x, xq

The OR gate can be composed of AND and NOT gates. You can check that x _ y “
 p x ^ yq. Thus, since Toffoli gates can generate AND, OR and FANOUT gates,
together with NOT gates, they can be used to perform any computation.

In fact, if there is a source of bits that are set to 1, Toffoli gates can simuate NOT
gates as well

T p1, 1, xq “ T p1, 1, xq.

1

But if you don’t start with any 1 bits, or with just one 1 bit, Toffoli gates cannot create
any new 1 bits. So all we really need the NOT gates for was to generate two 1 bits.

Note that using Toffoli gates as we did above for arbitrary computations generates a
lot of extra bits which are not part of the output. For example, to compute an AND, we
start with one extra bit initialized to the 0 value, and end up with two extra copies of our
input bits that aren’t generated by a classical AND gate. Thus, reversible computation
is generally less space-efficient that classical computation. What is worse for quantum
comptuation, however, is that we have extra “garbage” bits lying around. You don’t
have enough background to understand this now, but these will destroy interference
interactions that are necessary for quantum computation to work. There is a theorem,
however, that if you keep the input around, you can reset all these workbits to their
initial values (either 0 or 1, say). We now prove this theorem.

Theorem 1 If there is a classical circuit with a gates taking xin to xout, there is a
reversible circuit with Opa ` |xout|q gates consisting of NOT gates, CNOT gates, and
Toffoli gates taking pxin, 0̄, 0̄q to pxin, xout, 0̄q. Here 0̄ means a string of 0s of the
appropriate legnth.

Proof:
First, to turn Toffoli gates into AND and NOT gates, we need to initialize some bits

to 0 and 1. However, since we are allowing NOT gates, we can use a NOT gate to turn
a 0 into a 1, and initialize all our extra workbits to 0.

Now, we can take our classical circuit and, with extra bits initialized to 0, turn all
the OR and AND gates into Toffoli gates. This circuit C1 takes

pxin, 0̄, 0̄q Ñ pxgarbage, xout, x
1
garbageq,

where xgarbage and x1garbage are the output bits from the Toffoli gates that we don’t
use.

Now, let’s take the previous circuit, and add a bunch of extra bits initialized to 0 to
it. These extra bits should have just enough room to hold the desired output. We can
now copy the output to these extra bits. This circuit C2 “ Ccopy ˝ C1 takes

pxin, 0̄, 0̄, 0̄q Ñ pxgarbage, xout, x
1
garbage, xoutq

But our circuit C1 is reversible, which means that we can run it backwards and take
the output to the input. Doing this on the first three registers of the above state takes
pxgarbage, xout, x

1
garbageq to pxin, 0̄, 0̄, 0̄q Thus, the circuit C3 “ C´1

1 CcopyC1 takes

pxin, 0̄, 0̄, 0̄q Ñ pxin, 0̄, 0̄, xoutq.

We need |xout| FANOUT gates to copy the output, and for each gate in the original
circuit, we use a constant number of gates in the reversible circuit. Thus, we have
proved our theorem.

The next thing that I did was to show

Theorem 2 If there is a classical circuit with a gates taking xin to xout, and a classical
circuit with b gates taking xout to xin, then there is a reversible circuit with Opa` b`
|xin| ` |xout| gates that takes

pxin, 0̄q Ñ pxout, 0̄q

2

Proof:
This follows from the previous theorem. We know that we have a reversible circuit

taking
pxin, 0̄, 0̄q Ñ pxin, xout, 0̄q

and one taking
pxout, 0̄, 0̄q Ñ pxout, xin, 0̄q.

To get the desired circuit, just apply the first circuit, swap xout and xin, and apply the
reverse of the second circuit.

Also note that if you have a reversible circuit taking pxin, 0̄q Ñ pxout, 0̄q, then this
gives a classical circuit taking xin Ñ xout and one taking xout Ñ xin, so we need
both parts of our hypothesis.

The last thing I did in lecture was to show that CNOT SWAP, and NOT gates cannot
do universal reversible computation. To do this, I proved the theorem

Theorem 3 Suppose you have a circuit made of CNOT, SWAP, and NOT gates that
takes x1, x2, x3, x4, . . ., xn to y1, y2, y3, y4, . . ., yn. Then for all yj , either

yj “ xi1 ‘ xi2 ‘ xi3 ‘ i1 . . .‘ ik

or

yj “ xi1 ‘ xi2 ‘ xi3 ‘ i1 . . .‘ ik ‘ 1

Proof Sketch: We prove the theorem by induction. It is easy to see it is true for the
CNOT, SWAP, and NOT gates. We thus assume that it is correct for any circuit of at
most n gates. Let us consider a circuit containing n ` 1 gates. The last gate will have
input that is of this form. It is fairly straightforward to see that the output is also of this
form. For example,

NOT pxi1 ‘ xi2 ‘ xi3 ‘ i1 . . .‘ ikq “ xi1 ‘ xi2 ‘ xi3 ‘ i1 . . .‘ ik ‘ 1

and if you take the XOR of two expressions of this form (as you do in a CNOT gate),
and variables that are duplicated cancel, and you are left with something of this form.
For example,

´

xi3 ‘ xi5 ‘ xi7 ‘ xi8 ‘ 1
¯

‘

´

xi1 ‘ xi3 ‘ xi7 ‘ 1
¯

“ xi1 ‘ xi3 ‘ xi8 .

We leave the remainder of the proof, namely, the case of SWAP to the reader.
These functions (which can be composed of CNOT, NOT, and SWAP gates) are

called Boolean linear functions, since they can be expressed as

y “Mx` b pmod 2q

where M is a binary matrix and b is a binary vector.

3

