
Notes 8.370/18.435 Fall 2022
Lecture 7 Prof. Peter Shor

Today’s lecture will be on classical Boolean circuits.
There are lots of different models for classical computers—the von Neumann model,

the Turing machine, Boolean circuits, and several more. We will be talking about quan-
tum circuits, which are the quantum equivalent of Boolean circuits.

Boolean circuits are one of the most elementary models of computing, but the
model that is usually used in the theory of computer science is Turing machines. So
why do we use them Boolean circuits and not Turing machines as the model for quan-
tum computers?

When David Deutsch, and later, Umesh Vazirani, started thinking about quantum
computers, they indeed started by thinking about quantum Turing machine. However,
after I proved the factoring result, I started talking to experimental physicists about
quantum Turing machines, and their response was that it is absolutely impossible to
design such objects, whereas it’s not that difficult to imagine how to build a quantum
circuit (building them in practice turns out to be very hard). Thus, the field quickly
adapted the quantum circuit model.

The way a classical circuit model works is that there are gates. Each gate has one or
two inputs, and some small number of outputs. For example, the figure below is a half-
adder (the name comes from the fact that you can wire together a bunch of half-adders
to make a circuit for adding two binary numbers).

In class, I asked the question: how many gates were in this figure. There were
a number of answers. The obvious one is “two”, an XOR gate and an AND gate.
However, if you look at this figure closely, there are two other possible things you
could call gates. Note the two red dots where one wire comes in and two leave. These
are FANOUT gates. The place where two wires cross could be called a SWAP gate.
And you might need several AND, NOT, and OR gates to implement the XOR gate.

1

The answer for quantum circuits is “four”; we need to count FANOUT gates, which
are the little red dots in the figure, for reasons we will explain later. These gates take
in a Boolean value, either 0 or 1, and duplicate it on the two wires leading out. Thus,
their truth table is:

in out
0 00
1 11

.

At this point, I want to discuss the quantum analog of FANOUT gates. These are
gates that take

| 0y Ñ | 00y

| 1y Ñ | 11y

It’s clear that the FANOUT gate in this form isn’t unitary, because the input space is
two-dimensional and the output space is four-dimensional. So how can we implement
this on a quantum computer? What we need is a gate that takes a two-dimensional space
to a subspace of the four-dimensional space of two qubits. The way we implement them
is to add a second qubit in the state | 0y, and then apply a CNOT:

| 0y Ñ | 00y
CNOT
ÝÑ | 00y

| 1y Ñ | 10y
CNOT
ÝÑ | 11y

How can we reverse this gate? We need to make sure the state is in the subspace
generated by | 00y and | 11y. The easiest way to do this is to first apply a CNOT gate
(since CNOT gates are their own inverses) and then measure the second qubit to make
sure it is in the state | 0y. If it’s not, something has gone wrong, and we would have to
report an error.

An important fact about Boolean functions is:

Theorem 1 Any Boolean function can be computed using AND, OR, and NOT gates,
where the inputs are either constant values (1 or 0) or variables (x1, x2, . . . , xn).

We will prove this by induction. The base case is easy, as the only one-bit Boolean
functions are constants, the identity, or NOT. Now, suppose we have a Boolean function
fpxq on n variables. We define two functions of n´ 1 variabes,

f0 “ fp0, x1q and f1 “ fp1, x1q,

where x1 = x2, x3, . . . , xn. By our induction hypothesis, f0 and f1 can be built out of
AND (^), OR (_), and NOT (). But now,

f “ px1 ^ fp1, x
1qq _ p x1 ^ fp0, x

1qq “ px1 ^ f0px
1qq _ p x1 ^ f0px

1qq.

This formula uses two AND gates, one OR gate, and a NOT gate, and two Boolean
functions on n ´ 1 variables. So if any Boolean function on n ´ 1 variables can be
computed using gpn´ 1q gates, a Boolean function on n variables can be solved using

2

2gpn ´ 1q ` 4 gates. Solving this recurrence shows that gpnq92n, so any Boolean
function on n variables can be computed using around 2n gates.

Do we really need that many? It turns out the answer is yes, you need exponentially
many gates. I’m not going to go into the proof in detail, but the basic idea is that you
can count the number of Boolean functions on n variables, and the number of Boolean
circuits on m gates, and you choose n and m to make sure that the second quantity is
larger than the first quantity.

To do classical circuits on a quantum computer, we may need to use reversible
computation.

Unitary gates are reversible, because if |φy “ U |ψy, then |ψy “ U : |φy. Mea-
surement gates are not, so we could perform non-reversible circuits on a quantum com-
puter using measurement gates. However, we will see that measurement tends to de-
stroy quantum interference, and interference is what makes quantum computers more
powerful than classical ones. So if we want our quantum algorithms to be more pow-
erful than classical ones, we need to use reversible classical computation on a quantum
computer. I will now give a brief overview of reversible classical computation.

It is fairly straightforward to see that there are only two reversible one-bit gates, the
identity gate and the NOT gate. What possible reversible two-bit gates are there? First,
it’s straightforward to see that the SWAP gate is reversible.

We can characterize all two-bit gates by their truth tables. Consider an arbitrary
reversible two-bit gate G:

G “

in out
00 ??
01 ??
10 ??
11 ??

.

where all four bit strings ?? are different.
Now, by applying NOT gates after G, we can ensure that 00 goes to 00 (without

loss of generality):

G1 “

in out
00 00
01 ??
10 ??
11 ??

.

Next, both of 01 and 10 cannot be taken to 11, so by using SWAP gates in front of
and behind G1 (I’m skipping the details here; you can work them out), we can put it in
the form:

G2 “

in out
00 00
01 01
10 ??
11 ??

.

Now, we need to replace the two ??’s by 10 and 11. One way of doing this leads to

3

the identity gate. The other way leads to the CNOT gate:

CNOT “

in out
00 00
01 01
10 11
11 10

.

The formula for the CNOT gate is

pa, bq Ñ pa, a‘ bq

CNOT stands for “controlled NOT”. This gate applies a NOT to the second bit (the
target bit) if the first bit (the control bit) is 1 and the identity to the target bit if the
control bit is 0.

So can we obtain any two-bit reversible Boolean function by using just SWAP,
NOT, and CNOT gates (and in fact, we don’t actually need SWAP gates; later, we will
see that a SWAP gate can be buit out of three CNOT gates).

Can we obtain any reversible Boolean function fromm these gates? It turns out that
the answer is “‘no”. Why not? If we have time Monday, we will explain it. Otherwise,
we may put it on the homework.

Can we obtain any reversible Boolean function with three-bit reversible gates? Yes.
it suffices to use NOT gates and Toffoli gates. The Toffoli gate is a controlled controlled
NOT, having the following truth table:

Toffoli “

in out
000 000
001 001
010 010
011 011
100 100
101 101
110 111
111 110

.

Here, a NOT is applied to the third bit if both the first two bits are 1, so the formula is
`

a, b, c
˘

Ñ
`

a, b, c‘ pa^ bq
˘

.

We will explain this in the next lecture.

4

