
Notes 8.370/18.435 Fall 2022
Lecture 6 Prof. Peter Shor

In the last class, you saw how the tensor product of quantum states and the tensor
product of unitary operators worked. Today, we’ll talk about the tensor product of
measurements.

Recall that a von Neumann measurement on a quantum state space A was a set of
Hermitian projectors Π1, Π2, . . ., Πk such that ΠiΠj= 0 if i ‰ j and

řk
i“1 Πi “ IA.

Suppose you have two individual von Neumann measurements on systems A and
B, tΠA

1 ,Π
A
2 , . . . ,Π

A
k u and tΠB

1 ,Π
B
2 , . . . ,Π

B
` u. Then there is a tensor product mea-

surement on AbB given by

tΠA
i bΠB

j |1 ď i ď k, 1 ď j ď `u.

It is not difficult to show that this set of projectors satisfies the conditions to be a von
Neumann measurement.

One very common tensor product measurement is when we just make a measure-
ment on system A and leave system B unchanged. This operation can be expressed
in the above formulation by letting the measurement on B be the single projector IB
(which does nothing to the quantum state on B). Thus if we have a basis for a qubit
| vy, | v̄y on systeam A, measurement operators for system AB are | vyA xv | b IB and
| v̄yA xv̄ | b IB .

Let’s do an example. Suppose we have two qubits in the joint state

|ψy “ α | 00y ` β | 01y ` γ | 10y

and we measure the first qubit in the t0, 1u basis. What happens?
The projection matrices associated with this measurement are

| 0yx0 | b I “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

and | 1yx1 | b I “

¨

˚

˚

˝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

What happens? The probability of getting the first outcome is

ˇ

ˇ

`

| 0yx0 | b I
˘

|ψy
ˇ

ˇ

2
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

¨

˚

˚

˝

α
β
γ
0

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˚

˚

˝

α
β
0
0

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ |α|2 ` |β|2

and the resulting state is 1?
|α|2`|β|2

pα | 00y ` β | 01yq. Since we measured the first

qubit, we know the state of the first qubit, so sometimes (by an abuse of notation
or something) we just take the resulting state to be the state on the second qubit,

1?
|α|2`|β|2

pα | 0y ` β | 1yq. Similarly, the probability of getting the second outcome

is |γ|2, and the resuting state of the second qubit is | 0y.
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There is a different way of doing these calculations. Here, we need to be careful
about which qubits the kets and bras apply to, so I will write them explicitly in the
following.

We can think of measuring the first qubit as applying either the bra (row vector)
x0 | or x1 | to the first qubit. We will make this explicit by labeling the qubits A and B.
Thus, when we measure the first qubit, we get one of the following two (unnormalized)
states:

A x0 |
`

α | 00yAB ` β | 01yAB ` γ | 00yAB
˘

“ α | 0yB ` β | 1yB

A x1 |
`

α | 00yAB ` β | 01yAB ` γ | 00yAB
˘

“ γ | 0yB

How do these calculations work? We have Ax0|00yAB “ | 0yB and Ax0|10yAB “ 0.
So applying A x¨ | to | ¨yAB results in an unnormalized quantum state vector on qubitB.
The square of length of this vector gives the probability of that measurement outcome,
and the normalized vector gives the resulting quantum state.

We now talk about the tensor product of observables. Suppose we have two observ-
ablesMA on quantum systemA andMB on quantum systemB. Recall that if we have
an observableM applied to a quantum state |ψy, it returns a value, and that xψ |M |ψy
is the expectation of the value.

How do we get the observable for the product of the values? We use MA bMB .
How about for the sum of the values? We use MAb IB ` IAbMB , where IA and IB
are the identity matrices on systems A and B, respectively.

Let’s take an example. The angular momentum observable for a spin-12 particle is
ˆ

1
2 0
0 ´1

2

˙

. Suppose we have two particles, A and B. Then

JA b JB “

¨

˚

˚

˝

1
4 0 0 0
0 ´ 1

4 0 0
0 0 ´ 1

4 0
0 0 0 1

4

˛

‹

‹

‚

JA b Ib ` IA b JB “

¨

˚

˚

˝

1
2 0 0 0
0 1

2 0 0
0 0 ´ 1

2 0
0 0 0 ´ 1

2

˛

‹

‹

‚

`

¨

˚

˚

˝

1
2 0 0 0
0 ´ 1

2 0 0
0 0 1

2 0
0 0 0 ´ 1

2

˛

‹

‹

‚

“

¨

˚

˚

˝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ´1

˛

‹

‹

‚

Now, let’s look at the state 1?
2
p| 01y ´ | 10yq. I claim that if you measure both

qubits in the same basis, no matter which basis it is, the two qubits will be different,
i.e., they will be orthogonal. What this means physically is that if you have the state
1?
2
p| Òy | Óy ´ | Óy | Òyq, and you measure them along any axis, you will find that they

are always spinning in opposite directions; a physical way of understanding this is that
the total spin of the state 1?

2
p| Òy | Óy ´ | Óy | Òyq is 0, so when you meaaure each qubit,

you end up with a total spin of 0.
Let’s do the computation. Suppose we measure the first particle in the basis

tcospθq | 0y ` eiφ sinpθq | 1y , sinpθq | 0y ` e´iφ cospθq | 1yu.

(It is straightforward to check that these two states are orthogonal and thus form a
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basis.) Then

1
?

2

´

cospθq x0 |`e´iφ sinpθq x1 |
¯

p| 01y´| 10yq “
1
?

2
cospθq | 1y´e´iφ sinpθq | 0y .

This is indeed the orthogonal state, so we have that if the two qubits are measured along
the same axis, the two states are orthogonal.

Now, we know enough to explain a variation of the EPR thought experiment. Sup-
pose Alice and Bob have an entangled pair of qubits in the state 1?

2
p| 01y ´ | 10yq

(called an EPR pair). They can separate them far enough so that they measure them
simultaneously, so that the speed of light prevents Alice’s particle from communicating
the basis its being measured in to Bob’s particle.

Now, Alice and Bob measure their particle in one of the four following bases:

t | f1y “ | 0y , | f2y “ | 1y u

t | g1y “ cos
π

8
| 0y ` sin

π

8
| 1y , | g2y “ ´ sin

π

8
| 0y ` cos

π

8
| 1y u

t |h1y “ cos
π

4
| 0y ` sin

π

4
| 1y , |h2y “ ´ sin

π

4
| 0y ` cos

π

4
| 1y u

t | j1y “ cos
3π

8
| 0y ` sin

3π

8
| 1y , | j2y “ ´ sin

3π

8
| 0y ` cos

3π

8
| 1y u

Let’s assume that each of Alice and Bob’s EPR pairs has a table of outcomes that
it will yield for each particle for all these three measurements. We are assuming a
deterministic process, but you can show that the same argument applies to probilistic
processes. The table will have to look something like this.

Basis F Basis G Basis H Basis J
A B A B A B A B
f1 f2 g1 g2 h2 h1 j2 j1
f1 f2 g1 g2 h1 h2 j1 j2
f2 f1 g2 g1 h2 h1 j2 j1
f2 f1 g2 g1 h2 h1 j1 j2
f1 f2 g2 g1 h2 h1 j2 j1
f1 f2 g1 g2 h1 h2 j1 j2

When Alice and Bob measure in the same basis, they must always get opposite out-
comes. If Alice measures f1 in basis F, then Bob must always measure f2 in basis
F . Thus, we can assume that Bob’s state is f2. Now, suppose Bob measures in ba-
sis G, then because xf2|g2y2 “ cos2 π8 « 0.85, Bob must get g2 with probability
0.85, so the first two columns must match (i.e., have (f1, f2, g1, g2) or (f2, f1, g2, g1))
in around 0.85 of their entries. Similarly, the second and third columns must match
in around 0.85 of their entries, and the third and fourth columns must match in around
0.85 of their entries. This means that the first and fourth columns must match in at least
1´ 3 ˚ 0.15 « 0.55 of their entries. However, xf1|j2y2 “ sin2 π

8 « 0.15, meaning that
the first and fourth columns can only match in 0.15 of their entries, a contradiction.

So what does this mean for physical reality? Physicists (and philosophers) have
been arguing about this for decades. Is the universe non-local (so the decision as to
which basis Alice measures in transmitted faster than light to Bob), or is something
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else going on? I’m going to leave that question to philosophers. One thing that is
true is that even if some information is transmitted faster than light, it’s not very use-
ful information. You cannot use entanglement to transmit a message faster than light
(although you can use it to do some non-intuitive things, as we will see later in the
course).
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