Notes 8.370/18.435 Fall 2022
Lecture 4 Prof. Peter Shor

Last time, we started talking about quantum mechanics. We mentioned the prin-
ciple that Isolated quantum systems evolve unitarily. That is, for an isolated system,

there is some unitary matrix U, that takes the state of the system at time —, | $(0)) to
the state of the system at time ¢, ie. | ¥(¢)) = U, | ¥(0)).

There is another operation we need to know for quantum computation, measure-
ment. We have already seem an example of a von Neumann measurement (also called a
projective measurement). Recall that we said if we have a quantum state « | A)+ 3 | B),
where the | A) and | B) are completely distinguishable states, then if we apply the ex-
periment that distinguishes | A) from | B), then we see | A) with probability |a|? and
| B) with probability |3|2. This is probably the simplest example of the following
definition:

Definition:

A complete projective measurement corresponds to a basis of the system. Suppose
| v1), | v2), ... |va) is an orthonormal basis for a quantum system. Then, if the system
is in state | 1), the von Neumann measurement corresponding to this basis yields | v;)
with probability |(v;|1)|?, where (v|w) is the inner product of the row vector (v | and
the column vector | w). Remember also that when you go from | v) to (v |, you take the
complex conjugate of v, so for a unit vector | v), (v|v) = 1. this is called a projective
measurement because the quantum state | ) is projected onto one of the basis vectors
|v;): theoretically, after the measurement, the quantum state is | v;». (In practice,
sometimes the measurement destroys or alters the quantum state.)

We now show that the probabilities of all the outcomes of a measurement sum to 1.
The sum of the probabilities of the outcomes is

Z \<Ui|¢>|2 = Z<1/J|Uz‘><vi|1/}>-

This equality follows from the fact that (¢)|v;» = {(v;|¥)*, so when you multiply them
together, you get the real value |[(v;|¥))|?. Now,

Z<¢|U1:><Ui|¢> = (| (Z | vi Xv; |> [ )

because we can move the sum inside the bracket. Now, since {| v;)} forms an orthonor-
mal basis, >, | v; Xv; | = I (you will prove this on the homework). So we have

@ (Zvai |> ) = (Wly) = 1.

Maybe I should say a little more about | vXv |. This is just the column vector | v)

multiplied by the row vector (v |. So if | v) = L ), then

0

|v><v|=<(1)>(1,0)=((1) 8)



Let’s now give an example. Suppose we have the quantum state

9y =210+ 3 1),

What is the probability of observing each of the outcomes if we measure it in the basis

{14117

The probability of seeing | +) is
[(H)? = ‘ (O +<N(510)+ 2| 1>)

‘5f 5\/) o

and similarly, the probability of seeing | —) is

|<—|w>|2:\ (1= D10 - 210y

=L
50"

So the chance of the result | +) is 33 while the chance of the result | —) is =5

This shouldn’t be surprising; the vector (0.8, 0.6) is nearly parallel w1th the vector
|+) = —(1 1), so when you project | 1) onto | +), you get a large projection, while
for | 7> you get a small projection.

There is a more general kind of projective measurement, where the outcomes cor-
respond to subspaces rather than quantum states. To specify this kind of measurement,
you need to give a set of subspaces S1, So, ..., Si. Let II; be the projection matrix

onto the ith subspace. In other words, if .S; has v(l), v§2> ...vyi)

basis, then
ZJJ ) >< ‘

This set of subspaces must satisfy the conditions:

as an orthogonal

ILI; =0 if ¢# 7,
i.e., the subspaces must be orthogonal, and
ML =1,
i
i.e., the subspaces must span the entire quantum state space.

When we apply this measurement to a quantum state | ), the probability of seeing
the ¢’th outcome is

P(i) = W1 ¥,
and the state of the system after the measurement is
IL; [ 4)
@ | )2

2



where we have normalized the projection onto S; so as to make it a unit vector.

We now give an example. Let’s take a four-dimensional quantum system with basis
states |0, | 1), |2) and | 3). We want the measurement that asks the question: is the
state | 0y or | 1), as opposed to being |2) or |3). That is, we want to the subspace
corresponding to the projection matirx IT4 = |0X0| 4 | 1X1 | or the projection matrix
IIp =|2X2|+|3X3].

We have
1 00 0 0000
01 00 0000
Ha+lls=1f 45 600|001 0 |71
000 0 00 0 1
and
1 00 0 0000
01 00 0000
Halls =5 ¢ o o o010 |%
000 0 00 0 1

so these projection matrices satisfy the conditions needed for them to be a projective
measurement.
) 5 7 5 1 . :
Let’s measure the state [¢) = 15 |0) + 15 1) + 75 [2) + 15 | 3) with this mea-
surement.
We have

Malv) = 35100+ 5511
This gives a probability of .52 + .72 = .74 for this outcome, and after this outcome,

the state
1

7
m(%‘0>+ﬁ|1>)
Similarly, . X

Op|¢) = 1512)+ 15 13)-

This gives a probability of .52 + .12 = .26 for this outcome, and after this outcome,

the state )

7% (512 +1513)

I should probably tell you that there are types of measurements that are more gen-
eral than these projective measurements, called POVM measurements. We will not
discuss them in this class (except maybe in a homework problem or two), because we
actually won’t need them in this course. You can learn about them by reading the
textbook, or taking the follow-up course 8.371/18.436.

There is another way of describing mesurement in quantum mechanics, which is to
use observables.

Recall from linear algebra that a symmetric matrix M is one for which M7T =
M, where MT is the transpose of M. A Hermitian matrix is one for which M t =
M, where M7 is the Hermitian transpose of M. The The Hermitian transpose is the



conjugate transpose: you take the transpose of a matrix and you take the complex
conjugates of each of its elements.

You can aways diagonalize a Hermitian matrix; if M is Hermitian, then there is
a unitary matrix U such that UTMU = D, where D is a diagonal matrix with real
entries.

An observable is a Hermitian matrix M on the state space of the quantum system.
Each of the eigenvalues of M will be associated with a subspace of eigenvectors with
that eigenvalue. The subspaces are orthogonal, and span the state space, and thus can
be associated with a measurement. For this observable, when the eigenspace associated
with the eigenvaue \; of M is observed, we say that we have observable takes the value
i

Before we go into the theory more, let’s do an example. We will use the observable

2 1
v- (1)
for a qubit. This matrix has two eigenvectors,

1 1
< f ) with eigenvalue 3, and ( \15 ) with eigenvalue 1.

V2 V2

This means we can express M as a linear combination of projectors:

(12)-f

One of the useful properties of the observable formulation is that we can easily
calculate the expectation value of an observable applied to a quantum state.

B[00 | =
B[00 | =

>+<_§ _§)=3|+><+|+|—><—.

Theorem 1 Given a state | ) and an observable H, the expectation value of the mea-
surement applied to H is

Expectation = (¢ | H | ).

Before we prove this theorem, let’s do an example. Suppose we have the state | ) =

2
310) + 2| 1). The observable M = 1 9
and returns the value 3 for the outcome | +) and the value 1 for the outcome | —).

The theorem gives
T4
25

3 4 2 1
for the expectation vaue of the observable.

Now, the probability of the outcome | +) is [(+[1)|? = 22 and the probability of
the outcome | —) is [(—|1))|? = ==. Thus, the expected value of the observable is

measures it in the basis {| +), | —)},

GOt
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49 1 74
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We now prove the theorem. Suppose the eigenvalues of an observable H are Aq, A2,
..., Aj, and the corresponding eigenspaces are S1, S, . .., .S;. Suppose further that II;
is the orthogonal projector onto .S;. Let us now apply this observable to a quantum
state | 1. The outcome of the measurement is ¢ with probability (¢ | IL; | 1). Thus, the
expectation of the observable is

2G9N = | (Z/\JL-) )
=WIH[Y),

where the first equality holds because matrix multiplication is linear, and the second
because H = ZZ A;IT;. This proves the theorem.



