
Notes 8.370/18.435 Fall 2022
Lecture 4 Prof. Peter Shor

Last time, we started talking about quantum mechanics. We mentioned the prin-
ciple that Isolated quantum systems evolve unitarily. That is, for an isolated system,

there is some unitary matrix Ut that takes the state of the system at time ´, |φp0qy to
the state of the system at time t, ie. |ψptqy “ Ut |Ψp0qy.

There is another operation we need to know for quantum computation, measure-
ment. We have already seem an example of a von Neumann measurement (also called a
projective measurement). Recall that we said if we have a quantum state α |Ay`β |By,
where the |Ay and |By are completely distinguishable states, then if we apply the ex-
periment that distinguishes |Ay from |By, then we see |Ay with probability |α|2 and
|By with probability |β|2. This is probably the simplest example of the following
definition:
Definition:
A complete projective measurement corresponds to a basis of the system. Suppose
| v1y, | v2y, . . . | vdy is an orthonormal basis for a quantum system. Then, if the system
is in state |ψy, the von Neumann measurement corresponding to this basis yields | viy
with probability |xvi|ψy|2, where xv|wy is the inner product of the row vector xv | and
the column vector |wy. Remember also that when you go from | vy to xv |, you take the
complex conjugate of v, so for a unit vector | vy, xv|vy “ 1. this is called a projective
measurement because the quantum state |ψy is projected onto one of the basis vectors
| viy: theoretically, after the measurement, the quantum state is | viy. (In practice,
sometimes the measurement destroys or alters the quantum state.)

We now show that the probabilities of all the outcomes of a measurement sum to 1.
The sum of the probabilities of the outcomes is

ÿ

i

|xvi|ψy|
2 “

ÿ

i

xψ|viyxvi|ψy.

This equality follows from the fact that xψ|viy “ xvi|ψy˚, so when you multiply them
together, you get the real value |xvi|ψy|2. Now,

ÿ

i

xψ|viyxvi|ψy “ xψ |

˜

ÿ

i

| viyxvi |

¸

|ψy

because we can move the sum inside the bracket. Now, since t| viyu forms an orthonor-
mal basis,

ř

i | viyxvi | “ I (you will prove this on the homework). So we have

xψ |

˜

ÿ

i

| viyxvi |

¸

|ψy “ xψ|ψy “ 1.

Maybe I should say a little more about | vyxv |. This is just the column vector | vy

multiplied by the row vector xv |. So if | vy “
ˆ

1
0

˙

, then

| vyxv | “

ˆ

1
0

˙

p1, 0q “

ˆ

1 0
0 0

˙

.
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Let’s now give an example. Suppose we have the quantum state

|ψy “
4

5
| 0y `

3

5
| 1y .

What is the probability of observing each of the outcomes if we measure it in the basis
t|`y , | ´yu?

The probability of seeing | `y is

|x`|ψy|2 “
ˇ

ˇ

ˇ

1?
2
px0 | ` x1 |qp 45 | 0y `

3
5 | 1yq

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

4
5
?
2
` 3

5
?
2

ˇ

ˇ

ˇ

2

“ 49
50

and similarly, the probability of seeing | ´y is

|x´|ψy|2 “
ˇ

ˇ

ˇ

1?
2
px0 | ´ x1 |qp 45 | 0y ´

3
5 | 1yq

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

4
5
?
2
´ 3

5
?
2

ˇ

ˇ

ˇ

2

“ 1
50 ,

So the chance of the result | `y is 49
50 while the chance of the result | ´y is 1

50 .
This shouldn’t be surprising; the vector p0.8, 0.6q is nearly parallel with the vector

| `y “ 1?
2
p1, 1q, so when you project |ψy onto | `y, you get a large projection, while

for | ´y, you get a small projection.
There is a more general kind of projective measurement, where the outcomes cor-

respond to subspaces rather than quantum states. To specify this kind of measurement,
you need to give a set of subspaces S1, S2, . . ., Sk. Let Πi be the projection matrix
onto the ith subspace. In other words, if Si has vp1qi , vp2qi . . . vp`iqi as an orthogonal
basis, then

Πi “

`j
ÿ

j“1

ˇ

ˇ

ˇ
v
pjq
i

EA

v
pjq
i

ˇ

ˇ

ˇ
.

This set of subspaces must satisfy the conditions:

ΠiΠj “ 0 if i ‰ j,

i.e., the subspaces must be orthogonal, and
ÿ

i

Πi “ I,

i.e., the subspaces must span the entire quantum state space.
When we apply this measurement to a quantum state |ψy, the probability of seeing

the i’th outcome is
P piq “ xψ |Πi |ψy ,

and the state of the system after the measurement is

Πi |ψy

xψ |Πi |ψy
1{2

,
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where we have normalized the projection onto Si so as to make it a unit vector.
We now give an example. Let’s take a four-dimensional quantum system with basis

states | 0y, | 1y, | 2y and | 3y. We want the measurement that asks the question: is the
state | 0y or | 1y, as opposed to being | 2y or | 3y. That is, we want to the subspace
corresponding to the projection matirx ΠA “ | 0yx0 | ` | 1yx1 | or the projection matrix
ΠB “ | 2yx2 | ` | 3yx3 |.

We have

ΠA `ΠB “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

`

¨

˚

˚

˝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

“ I

and

ΠAΠB “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

¨

˚

˚

˝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

“ 0,

so these projection matrices satisfy the conditions needed for them to be a projective
measurement.

Let’s measure the state |ψy “ 5
10 | 0y `

7
10 | 1y `

5
10 | 2y `

1
10 | 3y with this mea-

surement.
We have

ΠA |ψy “
5
10 | 0y `

7
10 | 1y

This gives a probability of .52 ` .72 “ .74 for this outcome, and after this outcome,
the state

1
?
.74

`

5
10 | 0y `

7
10 | 1y

˘

Similarly,
ΠB |ψy “

5
10 | 2y `

1
10 | 3y.

This gives a probability of .52 ` .12 “ .26 for this outcome, and after this outcome,
the state

1
?
.26

`

5
10 | 2y `

1
10 | 3y

˘

I should probably tell you that there are types of measurements that are more gen-
eral than these projective measurements, called POVM measurements. We will not
discuss them in this class (except maybe in a homework problem or two), because we
actually won’t need them in this course. You can learn about them by reading the
textbook, or taking the follow-up course 8.371/18.436.

There is another way of describing mesurement in quantum mechanics, which is to
use observables.

Recall from linear algebra that a symmetric matrix M is one for which MT “

M , where MT is the transpose of M . A Hermitian matrix is one for which M : “

M , where M : is the Hermitian transpose of M . The The Hermitian transpose is the
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conjugate transpose: you take the transpose of a matrix and you take the complex
conjugates of each of its elements.

You can aways diagonalize a Hermitian matrix; if M is Hermitian, then there is
a unitary matrix U such that U :MU “ D, where D is a diagonal matrix with real
entries.

An observable is a Hermitian matrix M on the state space of the quantum system.
Each of the eigenvalues of M will be associated with a subspace of eigenvectors with
that eigenvalue. The subspaces are orthogonal, and span the state space, and thus can
be associated with a measurement. For this observable, when the eigenspace associated
with the eigenvaue λi ofM is observed, we say that we have observable takes the value
λi.

Before we go into the theory more, let’s do an example. We will use the observable

M “

ˆ

2 1
1 2

˙

for a qubit. This matrix has two eigenvectors,
˜

1?
2
1?
2

¸

with eigenvalue 3, and

˜

1?
2

´ 1?
2

¸

with eigenvalue 1.

This means we can express M as a linear combination of projectors:
ˆ

2 1
1 2

˙

“ 3

ˆ

1
2

1
2

1
2

1
2

˙

`

ˆ

1
2 ´ 1

2
´ 1

2
1
2

˙

“ 3 | `yx` | ` |´yx´ | .

One of the useful properties of the observable formulation is that we can easily
calculate the expectation value of an observable applied to a quantum state.

Theorem 1 Given a state |ψy and an observable H , the expectation value of the mea-
surement applied to H is

Expectation “ xψ |H |ψy .

Before we prove this theorem, let’s do an example. Suppose we have the state |ψy “
3
5 | 0y `

4
5 | 1y. The observable M “

ˆ

2 1
1 2

˙

measures it in the basis t|`y , | ´yu,

and returns the value 3 for the outcome | `y and the value 1 for the outcome | ´y.
The theorem gives

xψ |M |ψy “

ˆ

3

5
,

4

5

˙ˆ

2 1
1 2

˙ˆ

3
5
4
5

˙

“
74

25

for the expectation vaue of the observable.
Now, the probability of the outcome | `y is |x`|ψy|2 “ 49

50 and the probability of
the outcome | ´y is |x´|ψy|2 “ 1

50 . Thus, the expected value of the observable is

49

50
¨ 3`

1

50
¨ 1 “

74

25
.
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We now prove the theorem. Suppose the eigenvalues of an observableH are λ1, λ2,
. . . , λj , and the corresponding eigenspaces are S1, S2, . . . , Sj . Suppose further that Πi

is the orthogonal projector onto Si. Let us now apply this observable to a quantum
state |ψy. The outcome of the measurement is i with probability xψ |Πi |ψy. Thus, the
expectation of the observable is

ÿ

i

xψ |Πi |ψyλi “ xψ |

˜

ÿ

i

λiΠi

¸

|ψy

“ xψ |H |ψy ,

where the first equality holds because matrix multiplication is linear, and the second
because H “

ř

i λiΠi. This proves the theorem.
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