18.447 
Course information:
For 18.447, we will be using the textbook Alon and Spencer, The
Probabilistic Method. I will be trying to use examples both from
combinatorics and algorithms, but the emphasis will likely be on
combinatorics, since this is the emphasis in the book. I haven't taught
this course before, so I don't know exactly how much material I will 
end up covering, but my current plan is to cover at least the basic 
probabilistic method (selections from chapters 1-3), the second moment 
method (chapter 4), the Lovasz local lemma (chapter 5), martingales 
(chapter 7), and random graphs (chapter 10).
Grading Information:
 
I will give one takehome midterm, on Tuesday Oct. 26.
There are homework assignments, and a final project. 
Homework assignments will be given roughly every two weeks.
Homework Assignments
The first homework assignment is to do Problems 1, 8, and 10
from Chapter 1, and Problems 2 and 7 from Chapter 2, of Alon and Spencer.
Hint for problem 2.  Consider the real line modulo r, for real numbers r.
(This is a hint for the way I know to solve it ... there may be other 
solutions as well.)
Solutions are 
here
The second homework is to do Problem 1 from Chapter 3, Problem 1 from 
Chapter 15, and Problems 1,4, and 5 from Chapter 4.
The third homework is 
here.  I was wrong about the second problem; you can actually
use the symmetric version of the Lovasz Local Lemma if you find
the right (and not particularly difficult) clever trick.
Solutions are
here.
The midterm is 
here
Note that a typo has been corrected in problem 2.
The fifth homework is chapter 6, problem 1 and chapter 10, problems 1 and 3.
It will be due Thursday, Nov. 18.
Lectures
I will try to announce the chapters of Alon and Spencer that
contain the material we're covering here.  I'm not following
the book exactly, so I will skip over some material from these 
chapters, and may include some extra material, but for those who 
want to look at the textbook before class, this will give an 
idea of what I'll be covering. 
	 Thur. 09/09:  Introduction; chapter 1
	 Tue. 09/14:  To be added later.
	 Thur. 09/16:  Coding Theory.  Sections 14.1, 3.4, and the
				Gilbert-Varshamov bound.
	 Tue. 09/21:  We covered two topics that I found on-line;
	section 2.1 of  these
	notes and Section 2 of
	
	these notes.
	 Thur. 09/23:  We'll talk about Chernov bounds, and an 
	application of them.
	 Tue. 09/28:  Second moment method, 4.1 - 4.4
	 Thur. 09/30:  Second moment method continued 
	 Tue. 10/05:  Lovasz Local Lemma 5.1, 5.2, 5.3
	 Thur. 10/07:  algorithmic Lovasz Local Lemma section 5.7
	 Tue. 10/12:  Azuma's inequality. (7.1, 7.2, 7.5)
	 Thur. 10/14:  Use of Azuma's inequality for chromatic
	number (7.3)
	 Tue. 10/19:  Start of Talagrand's inequality.  Section 7.6
	and 7.7
	 Thur. 10/24:  Finish up Talagrand's inequality.  
	 Tue. 10/26:  FKG inequality
	 Thur. 10/28:  FKG inequality: finite distributive lattices
	                        and Shepp's application to linear extensions
				of partial orders.
	 Tue. 11/2:   Janson's inequality (chapter 8)
	 Thur. 11/4:   Brun's sieve
	 Tue. 11/9:    random graphs   (chapter 10)
	 Thur. 11/11:  HOLIDAY
	 Tue. 11/16:   more on the phase transition in random graphs 
	 Thur. 11/18:  expanders
	 Tue. 11/20:  more on expanders
	 Thur. 11/25:  HOLIDAY
	 Tue. 11/30:  Markov chain mixing and conductance.  See this
	paper by
	Jerrum and Sinclair and 
	Lecture 3 in this set of notes by Bela Bollobas
	 Thur. 12/02:  
	 Tue. 12/07:  
	 Tue. 12/09: