
18.435/2.111 Homework # 3 Solutions

1: The density matrix is

|ψ〉〈ψ | =
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Taking Tr A gives
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Taking Tr B gives
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Looking at Tr A, one can see that the eigenvectors of (1,±1), which shows that the

eigenvalues are 1
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An alternative way of calculating is

|ψ〉〈ψ | =
1

4
(
√

2 | 00〉 + | 01〉 + | 11〉)(
√

2 〈00 | + 〈01 | + 〈11 |)

Taking Tr A gives
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(
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2 | 0〉B + | 1〉B)(
√

2 B 〈0 | + B 〈1 |) ·A 〈0|0〉A +
1

4
(| 1〉B 〈1 |) · A〈1|1〉A

(I’ve left out the terms which vanish because they have 〈0|1〉 and 〈1|0〉 in them.)

2: When we take the partial trace of |ψ〉〈ψ | we get

∑

i,j

aia
∗
j | vi〉 〈vj | · 〈wj|wi〉.

Now, we know that this expression must be equal to

∑

i

µi | vi〉〈vi | .

However, equating coefficients on | vi〉 〈vj |, we see that this means that µi = aia
∗
i and

〈wj|wi〉 = 0 if i 6= j, showing that the |wj〉 are an orthonormal basis. (We know
they are unit vectors because we constructed them that way: the normalization was
absorbed into ai.)
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3: We use the formula CNOTA,B CNOTB,A CNOTA,B = SWAP. If we use the fact that
a Toffoli gate is a controlled CNOT and a Fredkin gate is a controlled SWAP, we find
that

Toffoli1,2,3 Toffoli1,3,2 Toffoli1,2,3 = Fredkin1,2,3

where the indexes tell how the qubits fit into the Fredkin gate. (Note that I have
defined my Fredkin gate with the qubits in a different order from Nielsen and Chuang,
so for Nielsen and Chuang, you would have Fredkin3,1,2 in the above formula.)

You can replace the outer two Tofoli gates with CNOT’s by just checking that they
work properly if if qubit 1 is | 0〉 — if qubit 1 is | 1〉, then the behavior is the same as
the Toffoli. However, if qubit 1 is | 0〉, the middle Toffoli and the Fredkin gate behave
as the identity on the last two qubits, and we need to check that CNOT2 = I, which
is correct.

NC 4.28 I need to draw a picture for this ... I’ll put it up later.

NC 4.31. All of these equations are straightforward to obtain by matrix multiplication.
You could save yourself a little work by using

CσyC = i CσxC · CσzC

to obtain 4.33 from 4.32 and 4.34. You could also save yourself a little work by using
4.32, 4.33, 4.34, and 4.38 to obtain 4.35, 4.36, 4.37 and 4.39, respectively, by applying
the identities HσxH = σz and HC1,2H = HC2,1H.

NC 4.34.
Let | v+〉 and | v−〉 be the ±1 eigenvectors of U . We can solve this by looking at the
application of the circuit to the input step by step.

We start in the state | 0〉 |ψin〉. When we apply the first Hadamard, we obtain

2−1/2(| 0〉 + | 1〉) |ψin〉 .

When we apply the gate U , we get

2−1/2 | 0〉 |ψin〉 + | 1〉 (α | v+〉 − β | v−〉)

where α | v+〉+ β | v−〉 = |ψin〉 is the decomposition of |ψin〉 into the eigenvectors of U .
Now, this can be rewrriten as

2−1/2α(| 0〉 + | 1〉) | v+〉 + 2−1/2β(| 0〉 − | 1〉) | v−〉

The next Hadamard turns this into

α | 0〉 | v+〉 + β | 1〉 | v−〉 ,

and measuring the first qubit leaves the second qubit in an eigenstate of U .
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