18.435/2.111 Homework # 3 Solutions

1: The density matrix is

$$|\psi\rangle\!\langle\psi| = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}}{4} \\ \frac{\sqrt{2}}{4} & \frac{1}{4} & 0 & \frac{1}{4} \\ 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & \frac{1}{4} & 0 & \frac{1}{4} \end{pmatrix}.$$

Taking Tr $_A$ gives

$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{2}}{4} \\ \frac{\sqrt{2}}{4} & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \cdot$$

Taking Tr $_B$ gives

Looking at Tr _A, one can see that the eigenvectors of
$$(1, \pm 1)$$
, which shows that the eigenvalues are $\frac{1}{2} \pm \frac{\sqrt{2}}{4}$.

An alternative way of calculating is

$$|\psi\rangle\langle\psi| = \frac{1}{4}(\sqrt{2}|00\rangle + |01\rangle + |11\rangle)(\sqrt{2}\langle00| + \langle01| + \langle11|)$$

Taking Tr $_{A}$ gives

$$\frac{1}{4}(\sqrt{2}|0\rangle_B + |1\rangle_B)(\sqrt{2}_B\langle 0| + {}_B\langle 1|) \cdot_A \langle 0|0\rangle_A + \frac{1}{4}(|1\rangle_B\langle 1|) \cdot {}_A\langle 1|1\rangle_A \langle 1|1\rangle_B \langle 1|) \cdot_A \langle 1|1\rangle_A \langle 1|1\rangle_B \langle 1|) \cdot_A \langle 1|1\rangle_A \langle 1|1\rangle_B \langle 1|1\rangle_B$$

(I've left out the terms which vanish because they have $\langle 0|1\rangle$ and $\langle 1|0\rangle$ in them.) 2: When we take the partial trace of $|\psi\rangle\langle\psi|$ we get

$$\sum_{i,j} a_i a_j^* | v_i \rangle \langle v_j | \cdot \langle w_j | w_i \rangle$$

Now, we know that this expression must be equal to

$$\sum_{i} \mu_i \, | \, v_i \rangle \langle v_i \, | \, .$$

However, equating coefficients on $|v_i\rangle \langle v_j|$, we see that this means that $\mu_i = a_i a_i^*$ and $\langle w_j | w_i \rangle = 0$ if $i \neq j$, showing that the $|w_j\rangle$ are an orthonormal basis. (We know they are unit vectors because we constructed them that way: the normalization was absorbed into a_i .)

3: We use the formula $\text{CNOT}_{A,B}$ $\text{CNOT}_{B,A}$ $\text{CNOT}_{A,B}$ = SWAP. If we use the fact that a Toffoli gate is a controlled CNOT and a Fredkin gate is a controlled SWAP, we find that

Toffoli_{1,2,3} Toffoli_{1,3,2} Toffoli_{1,2,3} = Fredkin_{1,2,3}

where the indexes tell how the qubits fit into the Fredkin gate. (Note that I have defined my Fredkin gate with the qubits in a different order from Nielsen and Chuang, so for Nielsen and Chuang, you would have $\text{Fredkin}_{3,1,2}$ in the above formula.)

You can replace the outer two Tofoli gates with CNOT's by just checking that they work properly if if qubit 1 is $|0\rangle$ — if qubit 1 is $|1\rangle$, then the behavior is the same as the Toffoli. However, if qubit 1 is $|0\rangle$, the middle Toffoli and the Fredkin gate behave as the identity on the last two qubits, and we need to check that $\text{CNOT}^2 = I$, which is correct.

NC 4.28 I need to draw a picture for this ... I'll put it up later.

NC 4.31. All of these equations are straightforward to obtain by matrix multiplication. You could save yourself a little work by using

$$C\sigma_y C = i \ C\sigma_x C \cdot C\sigma_z C$$

to obtain 4.33 from 4.32 and 4.34. You could also save yourself a little work by using 4.32, 4.33, 4.34, and 4.38 to obtain 4.35, 4.36, 4.37 and 4.39, respectively, by applying the identities $H\sigma_x H = \sigma_z$ and $HC_{1,2}H = HC_{2,1}H$.

NC 4.34.

Let $|v_+\rangle$ and $|v_-\rangle$ be the ± 1 eigenvectors of U. We can solve this by looking at the application of the circuit to the input step by step.

We start in the state $|0\rangle |\psi_{in}\rangle$. When we apply the first Hadamard, we obtain

$$2^{-1/2}(|0\rangle + |1\rangle) |\psi_{\rm in}\rangle$$
.

When we apply the gate U, we get

$$2^{-1/2} |0\rangle |\psi_{\mathrm{in}}\rangle + |1\rangle (\alpha |v_{+}\rangle - \beta |v_{-}\rangle)$$

where $\alpha | v_+ \rangle + \beta | v_- \rangle = | \psi_{in} \rangle$ is the decomposition of $| \psi_{in} \rangle$ into the eigenvectors of U. Now, this can be rewritten as

$$2^{-1/2}\alpha(|0\rangle + |1\rangle) |v_{+}\rangle + 2^{-1/2}\beta(|0\rangle - |1\rangle) |v_{-}\rangle$$

The next Hadamard turns this into

$$\alpha | 0 \rangle | v_+ \rangle + \beta | 1 \rangle | v_- \rangle,$$

and measuring the first qubit leaves the second qubit in an eigenstate of U.