
1: (30 points) Consider the circuit below, composed of Hadamard and CNOT gates.
What is the state of the system after all the gates have been applied?

Answer; It starts out as | 000〉. After the first Hadamard, we get 1
√

2
(| 0〉+| 1〉) | 00〉. The

first CNOT gate makes this 1
√

2
(| 00〉 + | 11〉) | 0〉. The second CNOT gate makes this

1
√

2
(| 000〉+ | 111〉). The three Hadamards then give 1

√

2
(| 000〉+ | 011〉+ | 101〉+ | 110〉).

2: Suppose that for some large prime p we are given the state

1√
p− 1

p−1
∑

x=1

|x〉 | ax+ b mod p〉

where we do not know a or b.

2a: (20 points) Explain how we can use a quantum computer to find a with high
probability. (In this problem, you need not explicitly give a circuit for the quantum
Fourier transform mod p or for reversible classical computation.)

Answer: We take a QFT of both registers. We then get

1

p
√
p− 1

p−1
∑

s=0

p−1
∑

t=0

p−1
∑

x=1

| s〉 | t〉 e2πi(xs+(ax+b)t)/p

We can factor out the e2πibt/p term. The probability of observing | s〉 | t〉 is then the
square of

1

p
√
p− 1

p−1
∑

x=1

e2πix(s+at)/p.

The sum (without the prefactor) is either p− 1 or 1, depending on whether s+ at = 0.
If the sum is p− 1, the probability of observing a particular s, t pair with this sum

is p−1
p2 , and when we sum over all possible such s, t pairs, we get p−1

p
. If s 6= 0 in such

a pair, we can obtain a by division.
If the sum is 1, the probability of observing such a pair is 1

p2(p−1)
, and multiplying

by all the (p− 1)p possible such pairs, we get 1
p
. In this case, division will give us the

wrong answer.
We thus get the right answer with probability roughly 1 − 2

p

Answer: 2b: (10 points) Show how we can use quantum computing to find b with
high probability.

We can convert this to the question in part 2a. First, take the inverse of x. This
gives

1√
p− 1

p−1
∑

x=1

∣

∣ x−1
〉

| ax+ b mod p〉

1



Second, multiply the first register into the second register (which we can do since
x−1 6= 0). This gives

1√
p− 1

p−1
∑

x=1

∣

∣ x−1
〉
∣

∣ a+ bx−1 mod p
〉

.

Now, changing x−1 to y, we obtain the same state as in part (a), with the variables a
and b reversed:

1√
p− 1

p−1
∑

y=1

| y〉 | a + by mod p〉 .

3: (30 points) Suppose we have a quantum algorithm which applies U1, U2, U3, . . .,
Un to the initial state. Let us start with state |ψ〉. Let us call the state of the system
after k steps |ψk〉. Thus,

|ψk〉 = UkUk−1 . . . U2U1 |ψ〉

After the kth step, someone comes and applies a projective measurement to the first
qubit using the basis | 0〉 , | 1〉. The rest of the algorithm, consisting of the applications
of the unitaries Uk+1, . . ., Un, proceeds normally. Suppose that the probability of the
measurement outcome | 0〉 is at least 1−ǫ for ǫ = 0.0001. Prove that if the measurement
outcome is | 0〉, the final state is not very different from |ψn〉.
Answer: Let’s assume the probability is exactly 1− ǫ for simplicity. At the kth step,
since we know the outcome | 0〉 has probability 1 − ǫ, the state must be of the form
(for some |φ0〉 and |φ1〉 on the second through last qubits.

Uk . . . U1 |ψ〉 =
√

1 − ǫ | 0〉 |φ0〉 +
√
ǫ | 1〉 |φ1〉

Now, after it is measured, the state is

| 0〉 |φ0〉

We want the distance between these two states. By the triangle inequality, this is less
than

∣

∣ | 0〉 |φ0〉 −
√

1 − ǫ | 0〉 |φ0〉
∣

∣ +
∣

∣

√
1 − ǫ | 0〉 |φ0〉 − Uk . . . U1 |ψ〉

∣

∣ .

Both these terms are easy to estimate.
4: Suppose you are given one of the two states

|ψ1〉 = 1
√

10
(3 | 0〉 + | 1〉) |ψ2〉 = 1

√

10
(3 | 0〉 − | 1〉)

and you are offered a bet. You can guess which one it is; if you guess right, you are given
$1, but if you guess wrong, you lose $3. One strategy you could use is unambiguous
state discrimination; in this case, you will never guess wrong, but you may not always
be able to make a guess. From your homework, the probability of not guessing in this
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case is 〈ψ1|ψ2〉 = 8
10

, so if you use this strategy, you will make an average of $.20 per
quantum state.
4a: (10 points) Suppose you decide you always want to make a guess. In this case,
you should make the measurement which gives you the highest probability of guessing
the state correctly. What is the measurement? With what probability do you get the
right state? How much money do you make per quantum state in this case? (4b and
c next page)
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Recall we are betting on the two states

|ψ1〉 = 1
√

10
(3 | 0〉 + | 1〉) |ψ2〉 = 1

√

10
(3 | 0〉 − | 1〉)

Winning gives you $1, and losing costs you $3. Now, let’s try to calculate the maximum
return per quantum state. The optimal measurement will be a POVM which has
elements E1 = | v1〉〈v1 |, E2 = | v2〉〈v2 | and E3 = | v3〉〈v3 |. We can take | v1〉 = 1

√

2
(a | 0〉+

| 1〉) and | v2〉 = 1
√

2
(a | 0〉 − | 1〉), for some positive a ≤ 1.

4b: (10 points) What is | v3〉? Explain (you need not be rigorous) why the optimal
measurement will have this form.

4c: (10 points) What is the a which maximizes the expected return per quantum state,
and what is that return?
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