
18.435/2.111 Homework 9 Solutions

1: First, three facts that follow from the definitions:

ei ωt
2

σz = cos(
ωt

2
)I + i sin(

ωt

2
)σz (1)

σ±σz = (σx ± iσy)σz = −iσy ∓ σx = ∓σ± (2)
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We can use these to show the desired result:
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2: Let’s write the two gates as U1 and U2:

U1 = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗Ry(θ) (7)
U2 = I ⊗ |0〉 〈0|+ σx ⊗ |1〉 〈1| , (8)

where Ry(θ) =
[
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2 .

]
Let’s also remember that we can write the

density matrix in terms of its matrix elements:

ρ = ρ00 |0〉 〈0|+ ρ01 |0〉 〈1|+ ρ10 |1〉 〈0|+ ρ11 |1〉 〈1| , (9)

where ρij = 〈i| ρ |j〉. After the first gate, we have
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The cross-terms go away when we look at the result after the second gate:

U2U1(ρ⊗ |0〉 〈0|)U †
1U †

2 = ρ00 |00〉 〈00|+ cos2
θ

2
ρ11 |10〉 〈10|+ sin2 θ

2
ρ11 |01〉 〈01|

After we measure the second qubit (equivalent to taking the partial trace of
the second qubit), we have

ρ00 |0〉 〈0|+ cos2
θ

2
ρ11 |1〉 〈1|+ sin2 θ

2
ρ11 |0〉 〈0| = E0ρE†

0 + E1ρE†
1, (10)
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where E0 =
[
1 0
0 cos θ

2

]
and E1 =

[
0 sin θ

2
0 0

]
. Note that this is the amplitude

damping channel with γ = sin2 θ
2 .

3: Several of you noticed that this problem, as stated in Nielsen and
Chuang, is incorrect. The reasoning is sound, but there is an error in the
specification of {Edr

i }. I will explain in the course of the problem.
Our initial density matrix is given by

|ψ〉 〈ψ| = |a|2 |01〉 〈01|+ ab∗ |01〉 〈10|+ a∗b |10〉 〈01|+ |b|2 |01〉 〈01| . (11)

When we apply the amplitude damping channel, most of the terms cancel
(As E1 |0〉 = 0) and we get:

EAD ⊗ EAD(|ψ〉 〈ψ|) = (1− γ)(|ψ〉 〈ψ|) + γ(|a|2 + |b|2) |00〉 〈00|
= (1− γ)ρ + γ |00〉 〈00| . (12)

Let’s interpret this result. With probability 1−γ, the state is passed through
unperturbed. With probability γ, the state is replaced by |00〉 〈00|.

Here is where the problem is stated incorrectly. In order to describe this
operation, we actually need three operator elements {Edr

0 =
√

1− γI, Edr
1 =√

γ |00〉 〈01| , Edr
3 =

√
γ |00〉 〈10|}. Notice, also, that we are only defining the

action on the subspace of interest. Extra credit to those of you who spotted
this error!

4: To simplify the notation, let’s work in a basis where |v〉 = |0〉 and
|w〉 = a |0〉+b |1〉. Notice that the non-orthogonality constraints imply a 6= 0
and b 6= 0.

Let’s write Φ with the operator elements {Ei}. As we discussed in the
solutions to homework 8, we can interpret a pure state |ψ〉 input to this
operation as resulting in states Ei |ψ〉 /‖Ei |ψ〉 ‖ with probability ‖Ei |ψ〉 ‖2.
Thus, if the output state is also pure, we know that Ei |ψ〉 ∝ Ej |ψ〉 for all
i, j.

What does this tell us about |v〉 and |w〉? Since each are mapped to
themselves, we can conclude that Ei |0〉 = cie

iθ |0〉 and Ei |w〉 = die
iφ |w〉.

But note that Ei |w〉 = aEi |0〉+ bEi |1〉 ⇒ acie
iθ |0〉+ bEi |1〉 = die

iφ(a |0〉+
b |1〉. Clearly, this can only happen if di = ci and θ = φ. This further implies
that Ei |1〉 = cie

iθ |1〉.
We have now established the action of Φ(·) on the pure state basis |0〉

and |1〉. This tells us that Φ(|ψ〉 〈ψ|) = |ψ〉 〈ψ| for all |ψ〉. Since any ρ can
be written in the form ρ =

∑
k pk |k〉 〈k|, by linearity we see that Φ is the
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identity:

Φ(ρ) = Φ(
∑

k

pk |k〉 〈k|) (13)

=
∑

k

pkΦ(|k〉 〈k|) (14)

=
∑

k

pk |k〉 〈k| (15)

= ρ. (16)

5a: We want a measurement with two outcomes given by Π1 and Π2.
Let’s define outcome 1 as indicating our hypothesis that ρ1 was given, and
outcome 2 indicating ρ2. How do we write down the probability of error?
This is stated quite succinctly by conditional probabilities (though I’m abus-
ing notation here a bit):

Pr(Error) = P (Π1|ρ2)P (ρ2) + P (Π2|ρ1)P (ρ2). (17)

A projective measurement on a single qubit is given by the projectors Π1 =
|v〉 〈v| and Π2 = I − |v〉 〈v|. We are looking for the |v〉 that minimizes the
probability of error. Plugging into the above expression for the probability
of error, we have

Pr(Error) =
1
2
tr(Π1ρ2) +

1
2
tr(Π2ρ1) (18)

=
1
2
(〈v| ρ2 |v〉+ trρ1 − 〈v| ρ1 |v〉 (19)

=
1
2
(1− 〈v| (ρ1 − ρ2) |v〉). (20)

We can see that this will reach its minimum when |v〉 is the eigenvector of
ρ1 − ρ2 corresponding to the largest eigenvalue. We can see by inspection
that such a choice would satisfy the checks given in the hint.

5b: To generalize to a POVM, we can note that Π2 = I−Π1 and repeat
the construction:

Pr(Error) =
1
2
tr(Π1ρ2) +

1
2
tr(Π2ρ1) (21)

=
1
2
(1− trΠ1(ρ1 − ρ2)). (22)

Let |ai〉 be the eigenvectors of ρ1 − ρ2 associated with eigenvalues ai, where
I will assume (without loss of generality) that a1 ≥ a2. I claim that a1 ≥ 0
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and a2 ≤ 0, that is, that ρ1−ρ2 has one positive and one negative eigenvalue.
Both are identically 0 if and only if ρ1 = ρ2. This is a consequence of both
ρ1 and ρ2 being positive semidefinite with trace of 1.

We can write the trace in the above expression for the probability of
error as

trΠ1(ρ1 − ρ2) = 〈a1|Π1(ρ1 − ρ2) |a1〉+ 〈a2|Π1(ρ1 − ρ2) |a2〉 (23)
= a1 〈a1|Π1 |a1〉+ a2 〈a2|Π1 |a2〉 . (24)

Since Π1 is positive, and a2 is negative, we want to choose Π1 such that
〈a2|Π1 |a2〉 = 0. We also want 〈a1|Π1 |a1〉 as large as possible. Thus Π1 =
|a1〉 〈a1|. But this is just the same projective measurement we found in part
(a). Thus, we conclude that allowing a general POVM will not improve
upon the probability of error we found with a projective measurement.
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