18.435/2.111 Homework 9 Solutions

1: First, three facts that follow from the definitions:

$$e^{i\frac{\omega t}{2}\sigma_z} = \cos(\frac{\omega t}{2})I + i\sin(\frac{\omega t}{2})\sigma_z$$
 (1)

$$\sigma_{\pm}\sigma_{z} = (\sigma_{x} \pm i\sigma_{y})\sigma_{z} = -i\sigma_{y} \mp \sigma_{x} = \mp \sigma_{\pm}$$
 (2)

$$\sigma_z \sigma_{\pm} = \pm \sigma_{\pm} \tag{3}$$

We can use these to show the desired result:

$$e^{i\frac{\omega t}{2}\sigma_z}\sigma_{\pm}e^{-i\frac{\omega t}{2}\sigma_z} = (\cos(\frac{\omega t}{2})I + i\sin(\frac{\omega t}{2})\sigma_z)\sigma_{\pm}(\cos(\frac{\omega t}{2})I - i\sin(\frac{\omega t}{2})\sigma_z)$$

$$= (\cos(\frac{\omega t}{2}) \pm i\sin(\frac{\omega t}{2}))(\cos(\frac{\omega t}{2}) \pm i\sin(\frac{\omega t}{2}))\sigma_{\pm} \qquad (4)$$

$$= (e^{\pm i\frac{\omega t}{2}})^2\sigma_{\pm} \qquad (5)$$

$$= e^{\pm i\omega t}\sigma_{\pm}. \qquad (6)$$

2: Let's write the two gates as U_1 and U_2 :

$$U_1 = |0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes R_u(\theta) \tag{7}$$

$$U_2 = I \otimes |0\rangle \langle 0| + \sigma_x \otimes |1\rangle \langle 1|, \qquad (8)$$

where $R_y(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$ Let's also remember that we can write the density matrix in terms of its matrix elements:

$$\rho = \rho_{00} |0\rangle \langle 0| + \rho_{01} |0\rangle \langle 1| + \rho_{10} |1\rangle \langle 0| + \rho_{11} |1\rangle \langle 1|, \qquad (9)$$

where $\rho_{ij} = \langle i | \rho | j \rangle$. After the first gate, we have

$$U_{1}(\rho \otimes |0\rangle \langle 0|)U_{1}^{\dagger} = \rho_{00} |0\rangle \langle 0| \otimes |0\rangle \langle 0| + \rho_{11} |1\rangle \langle 1| \otimes R_{y}(\theta) |0\rangle \langle 0| R_{y}(\theta)^{\dagger}$$

$$= \rho_{00} |00\rangle \langle 00|$$

$$+ \rho_{11} |1\rangle \langle 1| \otimes (\cos \frac{\theta}{2}) |0\rangle + \sin \frac{\theta}{2} |1\rangle)(\cos \frac{\theta}{2}) \langle 0| + \sin \frac{\theta}{2} \langle 1|).$$

The cross-terms go away when we look at the result after the second gate:

$$U_{2}U_{1}(\rho \otimes |0\rangle \langle 0|)U_{1}^{\dagger}U_{2}^{\dagger} = \rho_{00} |00\rangle \langle 00| + \cos^{2} \frac{\theta}{2} \rho_{11} |10\rangle \langle 10| + \sin^{2} \frac{\theta}{2} \rho_{11} |01\rangle \langle 01|$$

After we measure the second qubit (equivalent to taking the partial trace of the second qubit), we have

$$\rho_{00} |0\rangle \langle 0| + \cos^2 \frac{\theta}{2} \rho_{11} |1\rangle \langle 1| + \sin^2 \frac{\theta}{2} \rho_{11} |0\rangle \langle 0| = E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger}, \quad (10)$$

where $E_0 = \begin{bmatrix} 1 & 0 \\ 0 & \cos \frac{\theta}{2} \end{bmatrix}$ and $E_1 = \begin{bmatrix} 0 & \sin \frac{\theta}{2} \\ 0 & 0 \end{bmatrix}$. Note that this is the amplitude damping channel with $\gamma = \sin^2 \frac{\theta}{2}$.

3: Several of you noticed that this problem, as stated in Nielsen and Chuang, is incorrect. The reasoning is sound, but there is an error in the specification of $\{E_i^{dr}\}$. I will explain in the course of the problem.

Our initial density matrix is given by

$$|\psi\rangle\langle\psi| = |a|^2 |01\rangle\langle01| + ab^* |01\rangle\langle10| + a^*b |10\rangle\langle01| + |b|^2 |01\rangle\langle01|.$$
 (11)

When we apply the amplitude damping channel, most of the terms cancel (As $E_1 |0\rangle = 0$) and we get:

$$\mathcal{E}_{AD} \otimes \mathcal{E}_{AD}(|\psi\rangle\langle\psi|) = (1 - \gamma)(|\psi\rangle\langle\psi|) + \gamma(|a|^2 + |b|^2)|00\rangle\langle00|$$

= $(1 - \gamma)\rho + \gamma|00\rangle\langle00|$. (12)

Let's interpret this result. With probability $1-\gamma$, the state is passed through unperturbed. With probability γ , the state is replaced by $|00\rangle\langle 00|$.

Here is where the problem is stated incorrectly. In order to describe this operation, we actually need three operator elements $\{E_0^{dr} = \sqrt{1-\gamma}I, E_1^{dr} = \sqrt{\gamma} |00\rangle \langle 01|, E_3^{dr} = \sqrt{\gamma} |00\rangle \langle 10|\}$. Notice, also, that we are only defining the action on the subspace of interest. Extra credit to those of you who spotted this error!

4: To simplify the notation, let's work in a basis where $|v\rangle = |0\rangle$ and $|w\rangle = a\,|0\rangle + b\,|1\rangle$. Notice that the non-orthogonality constraints imply $a \neq 0$ and $b \neq 0$.

Let's write Φ with the operator elements $\{E_i\}$. As we discussed in the solutions to homework 8, we can interpret a pure state $|\psi\rangle$ input to this operation as resulting in states $E_i |\psi\rangle / ||E_i |\psi\rangle||$ with probability $||E_i |\psi\rangle||^2$. Thus, if the output state is also pure, we know that $E_i |\psi\rangle \propto E_j |\psi\rangle$ for all i, j.

What does this tell us about $|v\rangle$ and $|w\rangle$? Since each are mapped to themselves, we can conclude that $E_i |0\rangle = c_i e^{i\theta} |0\rangle$ and $E_i |w\rangle = d_i e^{i\phi} |w\rangle$. But note that $E_i |w\rangle = aE_i |0\rangle + bE_i |1\rangle \Rightarrow ac_i e^{i\theta} |0\rangle + bE_i |1\rangle = d_i e^{i\phi} (a |0\rangle + b |1\rangle$. Clearly, this can only happen if $d_i = c_i$ and $\theta = \phi$. This further implies that $E_i |1\rangle = c_i e^{i\theta} |1\rangle$.

We have now established the action of $\Phi(\cdot)$ on the pure state basis $|0\rangle$ and $|1\rangle$. This tells us that $\Phi(|\psi\rangle\langle\psi|) = |\psi\rangle\langle\psi|$ for all $|\psi\rangle$. Since any ρ can be written in the form $\rho = \sum_k p_k |k\rangle\langle k|$, by linearity we see that Φ is the

identity:

$$\Phi(\rho) = \Phi(\sum_{k} p_k |k\rangle \langle k|) \tag{13}$$

$$= \sum_{k} p_k \Phi(|k\rangle \langle k|) \tag{14}$$

$$= \sum_{k} p_k |k\rangle \langle k| \tag{15}$$

$$= \rho.$$
 (16)

5a: We want a measurement with two outcomes given by Π_1 and Π_2 . Let's define outcome 1 as indicating our hypothesis that ρ_1 was given, and outcome 2 indicating ρ_2 . How do we write down the probability of error? This is stated quite succinctly by conditional probabilities (though I'm abusing notation here a bit):

$$Pr(Error) = P(\Pi_1|\rho_2)P(\rho_2) + P(\Pi_2|\rho_1)P(\rho_2).$$
 (17)

A projective measurement on a single qubit is given by the projectors $\Pi_1 = |v\rangle \langle v|$ and $\Pi_2 = I - |v\rangle \langle v|$. We are looking for the $|v\rangle$ that minimizes the probability of error. Plugging into the above expression for the probability of error, we have

$$Pr(Error) = \frac{1}{2} \operatorname{tr}(\Pi_1 \rho_2) + \frac{1}{2} \operatorname{tr}(\Pi_2 \rho_1)$$
 (18)

$$= \frac{1}{2} (\langle v | \rho_2 | v \rangle + \operatorname{tr} \rho_1 - \langle v | \rho_1 | v \rangle$$
 (19)

$$= \frac{1}{2} (1 - \langle v | (\rho_1 - \rho_2) | v \rangle). \tag{20}$$

We can see that this will reach its minimum when $|v\rangle$ is the eigenvector of $\rho_1 - \rho_2$ corresponding to the largest eigenvalue. We can see by inspection that such a choice would satisfy the checks given in the hint.

5b: To generalize to a POVM, we can note that $\Pi_2 = I - \Pi_1$ and repeat the construction:

$$Pr(Error) = \frac{1}{2} \operatorname{tr}(\Pi_1 \rho_2) + \frac{1}{2} \operatorname{tr}(\Pi_2 \rho_1)$$
 (21)

$$= \frac{1}{2}(1 - \operatorname{tr}\Pi_1(\rho_1 - \rho_2)). \tag{22}$$

Let $|a_i\rangle$ be the eigenvectors of $\rho_1 - \rho_2$ associated with eigenvalues a_i , where I will assume (without loss of generality) that $a_1 \geq a_2$. I claim that $a_1 \geq 0$

and $a_2 \leq 0$, that is, that $\rho_1 - \rho_2$ has one positive and one negative eigenvalue. Both are identically 0 if and only if $\rho_1 = \rho_2$. This is a consequence of both ρ_1 and ρ_2 being positive semidefinite with trace of 1.

We can write the trace in the above expression for the probability of error as

$$tr\Pi_{1}(\rho_{1} - \rho_{2}) = \langle a_{1} | \Pi_{1}(\rho_{1} - \rho_{2}) | a_{1} \rangle + \langle a_{2} | \Pi_{1}(\rho_{1} - \rho_{2}) | a_{2} \rangle$$
(23)
$$= a_{1} \langle a_{1} | \Pi_{1} | a_{1} \rangle + a_{2} \langle a_{2} | \Pi_{1} | a_{2} \rangle.$$
(24)

Since Π_1 is positive, and a_2 is negative, we want to choose Π_1 such that $\langle a_2 | \Pi_1 | a_2 \rangle = 0$. We also want $\langle a_1 | \Pi_1 | a_1 \rangle$ as large as possible. Thus $\Pi_1 = |a_1\rangle \langle a_1|$. But this is just the same projective measurement we found in part (a). Thus, we conclude that allowing a general POVM will not improve upon the probability of error we found with a projective measurement.