18.435/2.111 Homework 9 Solutions

1: First, three facts that follow from the definitions:

W t ¢
eiSo: cos(%)f + isin(%)az (1)
010, = (04 Eioy)o. = —ioy F oy = For (2)
0,0+ = :I:O'j: (3)

We can use these to show the desired result:

‘w ‘w t t t t
€T e T = (COS(%)I + isin(%)az)ai(cos(%)l - isin(%)az)
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2: Let’s write the two gates as U; and Us:
U = [0)0l&I+[1)(1]® Ry(6) (7)
Uy = 1®]0){0]+ 0z ®|1) (1], (8)
0 _qn?
where R, (0) = [C?Sg 81%2} Let’s also remember that we can write the
S11 5 COS bR

density matrix in terms of its matrix elements:

p = poo |0) (O] + po1 [0) (1] + p1o[1) (O] + p11 [1) (1], (9)

where p;; = (i| p|j). After the first gate, we have

Ui(p@10) (0DU] = poo [0) (0] @ [0) (0 + pur [1) (1] ® Ry (6) [0) (0] Ry (6)'
= poo 00) (00|

0 0 0 0
+ pn 1) (1] @ (cos 5) |0) + Sin§ |1))(cos 5) (0] + Sin§ (1)).
The cross-terms go away when we look at the result after the second gate:
0 . o0
UaUs(p @ [0) (ODUTUS = poo [00) (00 + cos® pr [10) (10| + sin® 2 pry [01) (01

After we measure the second qubit (equivalent to taking the partial trace of
the second qubit), we have

0 . o0
p00 [0} (0] + cos” Zp1a [1) (1] +sin® 211 [0) (0] = EopE} + EvpEf,  (10)
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damping channel with v = sin® 7.

3: Several of you noticed that this problem, as stated in Nielsen and
Chuang, is incorrect. The reasoning is sound, but there is an error in the
specification of {El-dT}. I will explain in the course of the problem.

Our initial density matrix is given by

0
0 sing

where Fy = { 0 0

}andEl—[
26

] . Note that this is the amplitude

) (| = |a|?|01) (01] + ab®|01) (10| + a*b|10) (01| + [b[* |01) (01|. (11)

When we apply the amplitude damping channel, most of the terms cancel
(As E110) = 0) and we get:

Eap @ Eap(|9) (W) = (1 =)(1¥) (&]) +v(lal* + [b]*) [00) (00|
= (L—9)p+~[00){00]. (12)

Let’s interpret this result. With probability 1—-, the state is passed through
unperturbed. With probability -, the state is replaced by |00) (00].

Here is where the problem is stated incorrectly. In order to describe this
operation, we actually need three operator elements { E" = /T — I, E{" =
V7100) (01], E§" = /7 100) (10]}. Notice, also, that we are only defining the
action on the subspace of interest. Extra credit to those of you who spotted
this error!

4: To simplify the notation, let’s work in a basis where |v) = |0) and
|w) = a|0)+b]|1). Notice that the non-orthogonality constraints imply a # 0
and b # 0.

Let’s write ® with the operator elements {E;}. As we discussed in the
solutions to homework 8, we can interpret a pure state [¢)) input to this
operation as resulting in states E; |¢) /|| E; [¢) || with probability ||E; ) ||?.
Thus, if the output state is also pure, we know that E; [¢)) oc Ej |¢) for all
iyj.

What does this tell us about |v) and |w)? Since each are mapped to
themselves, we can conclude that E; [0) = c;e? |0) and E; |w) = d;e™® |w).
But note that E; |w> =akF; |O> +bE; |1> = aciew ’0) +bE; ‘1> = diew(a |O> +
b|1). Clearly, this can only happen if d; = ¢; and § = ¢. This further implies
that FE; |1) = ¢;e'? |1).

We have now established the action of ®(-) on the pure state basis |0)
and |1). This tells us that ®(|y) (¢|) = |¢) (¢] for all |¢). Since any p can
be written in the form p = ), py |k) (k|, by linearity we see that ® is the



identity:
(p) = ‘P(Zk:pk\kﬂkl) (13)
= gpk@(“@ () (14)
= gpklm (K| (15)

= p. (16)

5a: We want a measurement with two outcomes given by II; and Ils.
Let’s define outcome 1 as indicating our hypothesis that p; was given, and
outcome 2 indicating po. How do we write down the probability of error?
This is stated quite succinctly by conditional probabilities (though I'm abus-
ing notation here a bit):

Pr(Error) = P(Ili|p2) P(ps) + P(Ta|p1)P(po). (17)

A projective measurement on a single qubit is given by the projectors II; =
|v) (v] and Iy = I — |v) (v]. We are looking for the |v) that minimizes the
probability of error. Plugging into the above expression for the probability
of error, we have

Pr(Error) = %tr(ﬂlm)ﬂL%tr(HZPl) (18)
= 5ol palo) + txp1 — (vl pr o) (19)
= = (el (o1 — p2) o)) (20)

We can see that this will reach its minimum when |v) is the eigenvector of
p1 — p2 corresponding to the largest eigenvalue. We can see by inspection
that such a choice would satisfy the checks given in the hint.

5b: To generalize to a POVM, we can note that Il = I —II; and repeat
the construction:

Pr(Error) = %tr(ﬂlpg) + %tr(ﬂzpl) (21)
= %(1 — trlly(p1 — p2)).- (22)

Let |a;) be the eigenvectors of p; — py associated with eigenvalues a;, where
I will assume (without loss of generality) that a; > ag. I claim that a; >0



and a9 < 0, that is, that p; —p2 has one positive and one negative eigenvalue.
Both are identically 0 if and only if p; = po. This is a consequence of both
p1 and ps being positive semidefinite with trace of 1.

We can write the trace in the above expression for the probability of
error as

trlli(p1 — p2) = (a1[Ii(p1 — p2) |a1) + (a2 1L (p1 — p2) |az)  (23)
= a1 <a1| II; ]a1> + az <a2] II; \a2> . (24)

Since II; is positive, and a9 is negative, we want to choose II; such that
(ag) 11 |a2) = 0. We also want (ai|Il; |a;) as large as possible. Thus II; =
|a1) (a1|. But this is just the same projective measurement we found in part
(a). Thus, we conclude that allowing a general POVM will not improve
upon the probability of error we found with a projective measurement.



