
18.435/2.111 Homework 8 Solutions

1: The ground state of the quantum harmonic oscillator is given by
ψ0(x) = c0e

−αx2/2, where α = mω/h̄ and c0 is an unimportant constant. If
we apply the annihilation operator a =

√
1

2mωh̄(mωx+ip) =
√

mω
2h̄ (x+ h̄

mω
∂
∂x)

we get

aψ0(x) =
√

mω

2h̄
(x +

h̄

mω

∂

∂x
)c0e

−αx2/2 (1)

= c0

√
mω

2h̄
(x− αh̄x

mω
)e−αx2/2 (2)

= c0

√
mω

2h̄
(x− x)e−αx2/2 (3)

= 0 (4)

2a: First we should note that all of the Pauli matrices are Hermitian,
so we can drop all of the †’s from the expression. Next remember that
σxσz = −iσy, σxσy = iσz, and σzσy = −iσx. From these we can see the
following:

σxτσx =
1
4
(σxρσx + σ2

xρσ2
x + σxσyρσyσx + σxσzρσzσx) (5)

=
1
4
(σxρσx + ρ + (iσz)ρ(−iσz) + (−iσy)ρ(iσy)) (6)

= τ, (7)

σzτσz =
1
4
(σzρσz + σzσxρσxσz + σzσyρσyσz + σ2

zρσ2
z) (8)

=
1
4
(σzρσz + (iσy)ρ(−iσy) + (−iσx)ρ(iσx) + ρ) (9)

= τ. (10)

2b: A very nice way to see this is by remembering that the Pauli matrices
together with the identity I form a basis for 2 × 2 matrices. Thus we can
write τ = a0I + a1σx + a2σy + a3σz. From this we get

σxτσx = a0I + a1σx − a2σy − a3σz (11)
σzτσz = a0I − a1σx − a2σy + a3σz (12)

σzσxτσxσz = a0I − a1σx + a2σy − a3σz. (13)

Since all three of these must be equal, we can quickly see that a1 = a2 =
a3 = 0 and τ = a0I. Thus the only trace 1 τ is τ = 1

2I.
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2c: There are many solutions to this problem, but I will give an intuitive
solution that meets the ‘scaled unitary’ criterion. (This was not part of the
problem, though it was originally intended to be.) What we are looking for
are a generalization of the Pauli matrices to qutrits. We saw in an earlier
problem set one such generalization, using the two matrices

T =




0 0 1
1 0 0
0 1 0


 , R =




1 0 0
0 ω 0
0 0 ω


 , (14)

where ω = e2πi/3. These are the generalizations of σx and σz to three
dimensions. I claim that the set {RaT b/

√
3} for a, b ∈ {0, 1, 2} completely

randomize a qutrit.
To show this, let’s consider the action of these 9 matrices on opera-

tors |c〉 〈d|, where c, d ∈ {0, 1, 2}. While these are not density matrices
themselves, it should be quickly clear that they form a basis for all density
matrices. What is the mapping?

|c〉 〈d| 7→
∑

a,b

RaT b |c〉 〈d|T b†Ra†/3 (15)

=
∑

a,b

Ra |b + c mod 3〉 〈d + b mod 3|Ra†/3 (16)

=
∑

a,b

ωa(c−d) |b + c mod 3〉 〈b + d mod 3| /3 (17)

=
∑

b

|b + c mod 3〉 〈b + c mod 3| /3 (18)

= I/3. (19)

We go from (17) to (18) by noting that
∑

a ωa(c−d) = δcd. We can now write
down the desired result:

ρ =
∑

c,d

ρcd |c〉 〈d| (20)

7→
∑

c

ρccI/3 (21)

= I/3, (22)

since
∑

c ρcc = trρ = 1. Thus, these nine matrices completely randomize a
qubit.
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3a: Let |ψ〉 be an eigenvector of U †
2U1 with eigenvalue eiθ. We know

that this eigenvector exists as U †
2U1 is unitary. Then for ρ = |ψ〉 〈ψ|,

pU1ρU †
1 + (1− p)U2 |ψ〉 〈ψ|U †

2 = U2(pU †
2U1 |ψ〉 〈ψ|U †

1U2 + (1− p) |ψ〉 〈ψ|)U †
2

= U2(pei(θ−θ) |ψ〉 〈ψ|U †
1U2 + (1− p) |ψ〉 〈ψ|)U †

2

= U2 |ψ〉 〈ψ|U †
2 (23)

=
∣∣ψ′〉 〈

ψ′
∣∣ (24)

where |ψ′〉 = U2 |ψ〉. We have shown the existence of a pure input which
leads to a pure output.

3b: We need to show that we cannot satisfy the total randomization
property if we have fewer than 4 unitaries. It is trivially impossible for only
1 (as any pure input will lead to a pure output), and we showed in (3a) that
2 unitaries are insufficient. We can use the results of (3a) to show that 3
are also insufficient by contradiction. Assume we have Uk and pk, k = 1, 2, 3
such that the randomization property holds. Then we can write

I/2 = p1U
†
3U1ρU †

1U3 + p2U
†
3U2ρU †

2U3 + p3ρ (25)

= (1− p3)(
p1

p1 + p2
U †

3U1ρU †
1U3 +

p2

p1 + p2
U †

3U2ρU †
2U3) + p3ρ.(26)

From part (3a), we know that we can choose a pure input |ψ〉 〈ψ| such that
the portion in parentheses is a pure state |ψ′〉 〈ψ′|. Using this we have

I/2 = (1− p3)
∣∣ψ′〉 〈

ψ′
∣∣ + p3 |ψ〉 〈ψ| . (27)

This can only be satisfied if p3 = 1/2. (This is a necessary but not sufficient
condition for the equation to hold.) But notice that we could repeat this
same procedure to conclude that p1 = 1/2 and p2 = 1/2. This is clearly a
contradiction as they need to sum to 1.

Now we want to show that for m = 4, pk = 1/4. We can again use (3a).
Let’s rewrite the combination as

(p1 + p2)(
p1

p1 + p2
U1ρU †

1 +
p2

p1 + p2
U2ρU †

2) + p3U3ρU †
3 + p4U4ρU †

4 . (28)

We may again choose the input ψ that leaves the item in parentheses pure,
from which we see that

(p1 + p2)
∣∣ψ′〉 〈

ψ′
∣∣ + p3U3ρU †

3 + p4U4ρU †
4 = I/2. (29)
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We can conclude from this that p1 + p2 ≤ 1/2. To see this, bracket both
sides with |ψ′〉:

〈
ψ′

∣∣ [(p1 + p2)
∣∣ψ′〉 〈

ψ′
∣∣ + p3U3ρU †

3 + U4ρU †
4 ]

∣∣ψ′〉 =
〈
ψ′

∣∣ I/2
∣∣ψ′〉 (30)

p1 + p2 + p3
〈
ψ′

∣∣ U3ρU †
3

∣∣ψ′〉 + p4
〈
ψ′

∣∣ U4ρU †
4

∣∣ψ′〉 = 1/2 (31)
p1 + p2 ≤ 1/2 (32)

The last line arises because UkρU †
k is a positive semidefinite matrix, and

thus 〈ψ′|UkρU †
k |ψ′〉 ≥ 0 for all |ψ′〉.

Notice, there was nothing special about the choice of p1 and p2. We can
use a similar argument to conclude the pk + pk′ ≤ 1/2 for any k 6= k′. Since
we still have to sum to one, we can conclude that pk = 1/4.

4: There are several ways to approach this problem. I’m going to follow
an approach by first considering generically how to interpret a quantum
operation by Kraus operators {Ai} on a pure state |ψ〉. We may interpret
the outcome as being in state Ai |ψ〉 /‖Ai |ψ〉 ‖ with probability ‖Ai |ψ〉 ‖2.
If you write out the density matrix corresponding to this, you will see that
it becomes

∑
i Ai |ψ〉 〈ψ|A†i , which is the relationship we want.

Now to the problem at hand. We want the pure state input |ψ〉 such that
the output is also pure. Using the above interpretation, we conclude that
Ai |ψ〉 must point in the same direction for every i. Thus, A1 |ψ〉 ∝ A2 |ψ〉 ∝
A3 |ψ〉. We can come closer to a solution by noting that A3 is non-singular
in this case, so we can instead solve A−1

3 A1 |ψ〉 ∝ A−1
3 A2 |ψ〉 ∝ |ψ〉. In other

words, we want the joint eigenvectors of A−1
3 A1 and A−1

3 A2. This is now
just a numerical problem. Plugging in the numbers and solving, we see that

the two pure states are

[ √
2/3

±√
1/3

]
.
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