
18.435/2.111 Homework 4 Solutions

1: To define the change of basis operators, we wish to find Ux→y such
that Ux→y |x+〉 = |y+〉 and Ux→y |x−〉 = |y−〉. Viewing this in terms of bras
and kets, we should see the desired Ux→y (as well as Uz→y) quite simply as:

Ux→y = |y+〉 〈x+|+ |y−〉 〈x−| =
[

1 0
0 i

]
(1)

Uz→y = |y+〉 〈z+|+ |y−〉 〈z−| = 1√
2

[
1 1
i −i

]
(2)

Notice that I have written down the matrices in the |z±〉 basis, which is our
standard computational basis.

There was a fair amount of confusion on the next section, so I will derive
this very precisely, first in the general case. (Such a general derivation was
not required for full credit on this problem.) Let Aij = 〈vi|A |vj〉 be the
matrix elements of the operator A in the {vi} basis. What we want are the
matrix elements of A in the {wi} basis: A′ij = 〈wi|A |wj〉. U be the change
of basis operator to a basis {wi} (i.e. wi = Uvi ⇒ U =

∑
i |wi〉 〈vi|). We can

write the matrix elements of U in the {vi} basis as Uij = 〈vi|U |vj〉 = 〈vi|wj〉.
Now to calculate A′ij . We will write this out and twice use the trick of

inserting a complete set of states I =
∑

k |vk〉 〈vk|.

A′ij = 〈wi|A |wj〉 (3)

=
∑

kl

〈wi|vk〉 〈vk|A |vl〉 〈vl|wj〉 (4)

=
∑

kl

U∗
kiAklUlj . (5)

The last line tells us how to use the matrix elements of the change of basis
operator to convert Aij in the {vi} basis to A′ij in {wi}. Since we’re accus-
tomed to seeing matrix equations instead of index sums, I will write this out
as a matrix equation:

[A]w = [U ]†v[A]v[U ]v, (6)

where I have used [·] to remind us that these are now matrices in the specified
basis. (Notice that the † operator comes in the front.)

With the general framework in place, we can write down CNOT in the
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|y±〉 basis. We know that [CNOT ]z in the |z±〉 basis is given by

[CNOT ]z =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (7)

We can change the basis by writing this as

[CNOT ]y = [Uz→y ⊗ Uz→y]†z[CNOT ]z[Uz→y ⊗ Uz→y]z (8)

=
1
2




1 −i 1 i
i 1 −i 1
1 i 1 −i
−i 1 i 1


 (9)

2: First, we show that ‖ei‖ ≤ 1. Let |êi〉 = |ei〉 /‖ei‖. Then

1 = 〈êi|êi〉 = 〈êi| (
∑

k

|ek〉 〈ek|) |êi〉 (10)

=
∑

k

〈êi|ek〉〈ek|êi〉 = ‖ei‖2 +
∑

k 6=i

|〈ek|êi〉|2 (11)

≥ ‖ei‖2. (12)

Using the trace, we see that

n = trI = tr
∑

k

|ek〉 〈ek| =
∑

k

〈ek|ek〉 (13)

= ‖e1‖2 + ‖e2‖2 + · · ·+ ‖en‖2 ≤ n. (14)

The inequality at the end is a result of what we proved above. Obviously,
we must achieve equality, which implies ‖ei‖ = 1.

To prove orthogonality, we see that

1 = 〈ei|ei〉 = 〈ei| (
∑

k

|ek〉 〈ek|) |ei〉 (15)

= 1 +
∑

k 6=i

|〈ei|ek〉|2, (16)

which implies that 〈ei|ek〉 = δik.
3a: If we define A =

∑
i riEi, then the expected value of this observable

when in state |ψ〉 is

〈ψ|A |ψ〉 =
∑

i

ri 〈ψ|Ei |ψ〉 , (17)
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which is the desired result. We see that A is Hermitian by noting that each
Ei is Hermitian and ri is real.

3b: Let A and B be observables whose expected value is the same for
all states |ψ〉 as the POVM in part (a). Then 〈ψ|A |ψ〉 = 〈ψ|B |ψ〉 ⇒
〈ψ|A−B |ψ〉 = 0 for all |ψ〉. This can only be true if A−B = 0 ⇒ A = B.

3c: There are two simple classes of examples. The first notes that a
POVM on an n-dimensional system can have more than n elements. Since an
observable can only have n outcomes, any such POVM cannot be duplicated
by an observable. The second simple class of examples found cases where an
n element POVM still yielded different outcomes. A simple example would
be a POVM of elements

{[
1 0
0 .5

]
,

[
0 0
0 .5

]}
(18)

associated with outcomes {1, 0} respectively. Notice that the corresponding

observable is simply

[
1 0
0 .5

]
, which has outcomes {1, .5} (the eigenvalues).

4a: Let’s first do the Bell states 1√
2
(|00〉 ± |11〉:

1
2
(〈00| ± 〈11|)M ⊗ I(|00〉 ± |11〉)

=
1
2
(〈0|M |0〉 〈0|0〉 ± 〈0|M |1〉 〈0|1〉 ± 〈0|M |1〉 〈0|1〉+ 〈1|M |1〉 〈1|1〉)

=
1
2
(〈0|M |0〉+ 〈1|M |1〉).

Similarly, for 1√
2
(|10〉 ± |01〉:

1
2
(〈10| ± 〈01|)M ⊗ I(|10〉 ± |01〉)

=
1
2
(〈0|M |0〉 〈1|1〉 ± 〈0|M |1〉 〈1|0〉 ± 〈0|M |1〉 〈1|0〉+ 〈1|M |1〉 〈0|0〉)

=
1
2
(〈0|M |0〉+ 〈1|M |1〉).

4b: The most general measurement Eve can make will be a POVM with
elements of the form {Ei ⊗ I}. The probability of any of these outcomes is
given by 〈B|Ei ⊗ I |B〉, where |B〉 is one of the Bell states. As we showed
in (a), these probabilities are identical for any operator Ei, so Eve cannot
distinguish anything about the state.
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