18.435/2.111 Homework 4 Solutions

1: To define the change of basis operators, we wish to find U,_,, such
that Up—y |z+) = |y+) and U,y |z—) = |y—). Viewing this in terms of bras
and kets, we should see the desired U,_.,, (as well as U,_.,) quite simply as:

Uemy = et ) to-1= | g | )
Uimy = !y+><Z+|+|y—><z—\—\}§“ _11] (2)

Notice that I have written down the matrices in the |z+) basis, which is our
standard computational basis.

There was a fair amount of confusion on the next section, so I will derive
this very precisely, first in the general case. (Such a general derivation was
not required for full credit on this problem.) Let A;; = (v;| A|v;) be the
matrix elements of the operator A in the {v;} basis. What we want are the
matrix elements of A in the {w;} basis: A}; = (w;| A|w;). U be the change
of basis operator to a basis {w;} (i.e. w; = Uv; = U = >, |w;) (v;]). We can
write the matrix elements of U in the {v;} basis as U;; = (v| U |v;) = (vs|wj).

Now to calculate A};. We will write this out and twice use the trick of
inserting a complete set of states I = > |vg) (v /.

Ay = (wi] Afwy) (3)
= > (wilog) (ox| A o) (vrlwy) (4)

X
= Z Uri AU (5)
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The last line tells us how to use the matrix elements of the change of basis
operator to convert A;; in the {v;} basis to A;; in {w;}. Since we're accus-
tomed to seeing matrix equations instead of index sums, I will write this out
as a matrix equation:

[Alw = (U} [A][U]o, (6)

v
where I have used [-] to remind us that these are now matrices in the specified

basis. (Notice that the T operator comes in the front.)
With the general framework in place, we can write down CNOT in the



ly£) basis. We know that [CNOT], in the |z+) basis is given by

1 0 00
0100
0010
We can change the basis by writing this as
[CNOT), = [Usny @ U, JL{CNOT),[Usey @ Usey] (8)
1 —i 1 i
11 4 1 —i 1
I I R A ) )
- 1 ¢ 1
2: First, we show that ||e;|] < 1. Let |&;) = |e;) /||eil|. Then
L= (&lés) = (&l (D lew) (exl) &) (10)
k
= D (eiler)(exlés) = lleill® + D [{exlen]? (11)
k ki
> les]*. (12)
Using the trace, we see that
n o= tel=try ley) (ex| = (exlex) (13)
k k
= llet® + lleal® +- - + [leal® < n. (14)
The inequality at the end is a result of what we proved above. Obviously,
we must achieve equality, which implies ||e;|| = 1.
To prove orthogonality, we see that
L= lesles) = (el (D lew) (enl) les) (15)
k
= 1+Z’<ei|€k>|2, (16)
ki

which implies that (e;|ex) = .
3a: If we define A = ", r; E;, then the expected value of this observable
when in state |¢) is

(V] Ale) :ZW (V| Ei ), (17)
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which is the desired result. We see that A is Hermitian by noting that each
F; is Hermitian and r; is real.

3b: Let A and B be observables whose expected value is the same for
all states [¢)) as the POVM in part (a). Then (¢|A|¢) = (Y| Bl¢) =
(| A— B |¢p) = 0 for all [¢p). This can only be trueif A—B=0= A= B.

3c: There are two simple classes of examples. The first notes that a
POVM on an n-dimensional system can have more than n elements. Since an
observable can only have n outcomes, any such POVM cannot be duplicated
by an observable. The second simple class of examples found cases where an
n element POVM still yielded different outcomes. A simple example would
be a POVM of elements

(o) ]y "

associated with outcomes {1,0} respectively. Notice that the corresponding
1
observable is simply [ 0 % ] , which has outcomes {1, .5} (the eigenvalues).

4a: Let’s first do the Bell states |00) £ |11):

an
%(«)0\ + (11))M ® 1(]00) + |11))

5 ({01 310) (010) (0] M 1) 0]1) = (0] M [1) (O]1) + (1] M 1) {1]1)
= SUOIM [0} + (1] M 1))

Similarly, for %(]10) + [01):

%((10\ +(01))M ® I(|10) + [01))
%(<0|M!0> (1[1) & (0] M [1) (1]0) £ (0] M [1) (1]0) + (1 M [1) {0]0})
= SO [0} + (1] M 1))

4b: The most general measurement Eve can make will be a POVM with
elements of the form {F; ® I'}. The probability of any of these outcomes is
given by (B| E; ® I |B), where |B) is one of the Bell states. As we showed
in (a), these probabilities are identical for any operator FE;, so Eve cannot
distinguish anything about the state.



