18.435/2.111 Homework 3 Solutions
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1b: I have received feedback that this problem was confusing in terms
of dimensions, so I will try to be precise. The confusion arises when we
try to interpret a ket |v) in terms of the more familiar vector or n-tuple
[vi vy -+ vy ]T or when we interpret an operator as a familiar matriz.
Both the matrix and the vector representations for operators and kets arise
when we define a basis for the space of interest. If we define a basis {|i) };=1...4
we can say that Hg is the span of this basis. We can further define the space
H,, as the span of the first n kets of the basis. If we want to represent |v)
as a vector, we can do it in this basis by defining v; = (i|v).

Similarly, for any operator A : Hg — Hg, we can fully describe it by
its action on the basis kets {|i)}¢ ;. We define the matriz elements A;; =
(i| A|j) and we can always write the operator as A = 3=, A;;[i) (j|. Let’s
interpret 1" as an operator. We can see from the matrix elements that
T =Y |i) il

Now to the problem of interest. We have been told that |v) is in the
subspace generated by the first n basis vectors, i.e. v; = 0 for ¢ > n. Viewed
in terms of its basis elements, it should be clear that T'|v) = |v). In that
case, we insert 1" on either side of II; and see the desired equality:

(0T [v) = (W] TILT |v) = (v| Ej |v) ()

You might complain that I've left off the adjoint T. When we interpret 7" in
bra-ket notation, as above, we can see that 7' = T't.

I can see why this may be confusing. It may be easier to see if we were
to rewrite the desired equation as

HaIL [0)3, = 3., (0] Ei [0)gy, (6)

where I labelled with the bras and kets with subscripts indicating which
space they live in. In that case, T' is defined as T' = Y i |i)3, 1 (i]. We



can see that T # TT. In this form, we should derive the desired result
by noting that when |v)3, is spanned by the first n basis vectors, we have
|v)n, = THv)p, = TTT|v)y,. Using this, we can get

0L |0)3, = w0l T TIGT T 0)3, = 3¢, (0| Eilv)n, (7)

1c: First, let’s understand the probabilities associated with the k& + 1
outcomes of the consecutive projective measurement. The first measurement
has two outcomes, namely N and NOT N. We can state p(N) = (4| T1T |4)
and p(NOT N) = (¢| (I —TTT) |¢)) = 1 — p(N). Now, to derive the proba-
bilities of the subsequent measurement (for if we observed outcome N , first
let’s write down the resultant state after outcome N: (T1T)/\/p(N) |1).
From here, we can write the conditional probabilities for the & outcomes
associated with II;:

(| TTTILTIT [3)
p(N)

We use the definition of conditional probability to conclude

p(i|N) = (8)

p(i) = p(i|N)p(N) = (| TITILTTT |psi) . 9)

Combining these, we can define a POVM by the k + 1 operators {I —
TIT, T'TIL;TTT}. These form a valid POVM which we can see by sum-
ming them to the identity:

k k
[-T'T+> " TITIL T T = 1-7'T7+ 77> 1,)T'T  (10)
i=1 =1
= I-Tir4+ 71T (11)
= I (12)

2: Let’s first define what we mean by E'/2. We can see by its construc-
tion that F is a positive matrix (since it is defined as E = AT A), so we know
that it can be written as E = VDV, where V is unitary and D is a diag-
onal matrix where the diagonal entries are non-negative real numbers. By
convention, we write the diagonal elements of D in descending order. This
is the spectral decomposition of E. We define F1/2 = VD12V, (This defi-
nition is unique if £ has distinct eigenvalues, but this will not be important
for the existence proof we need here.)

Now let’s write down the singular value decomposition of A = USW,
where U and W are unitary and S is a diagonal matrix with non-negative real



diagonal entries. Again, we write the diagonal elements of S in descending
order. By writing E = ATA = WISUTUSW = W1S2W, we see that S =
D'/2,

If we write A = UDY?2W = UWWTDY2W, we can define U’ = WTUT
and we see that U’'A = WIUTUWWTDY2W = WTDY2W. This is what we
wanted to show, as the left hand side is F'/2. (Note, we haven’t claimed
W = V. This is only true the eigenvalues of E are distinct and E/? is
uniquely defined. This is a technicality that is not too important to our
purposes but is certainly worth understanding.)

3: Let’s start by noting that Q* = R? = §? = T? = I. This follows
immediately from the fact that the eigenvalues are 1. With this, the first
result is straight algebra:

(Q ® S+RS+RT-Q®T)?
= (R+Q) @S+ (R-Q)&T)
= (Q+R?*@I+(R-Q)*xI
+HR+Q)R-Q)@ST+(R-Q)(R+Q)®TS
= URT+QROI+RQII—QRI—RQ®I
+(R* - Q- RQ+QR)® ST+ (R - Q* - QR+ RQ)® TS
= 4I+QR®ST—RQ®ST—QR®TS+RQ®TS
AT+ [Q,R® ST —[Q,R| TS
= 414+ [Q,R|®[S,T].

The bound is easiest to see if we define
X=QRS+RRIS+RRIT—-QRT.

We know that the variance of a random variable is non-negative, so (X?) —
(X)2 > 0. We rearrange this and take the square root to get (X) < (X2)1/2,
So to finish the proof of the bound, we need to show that (X?2) < 8.

To continue, let’s remind ourselves about the meaning of the notation
(A). Above, I used it as the expected value. This is a shorthand referring
to the expected value of an observable (i.e. Hermitian operator) A when
the quantum state is [¢): (A) = (| Aly). It should be clear from linear
algebra that (A) < Apaz(A) where Ajaz(A) is the largest eigenvalue of A.

Now let’s look at ez ([@, R]). Writing out the commutator, we can see
that Apaz(QR — RQ) < Apaz(RQ) + Apin(RQ) < 2. A similar argument
shows that A\je.([S, 7)) < 2. Finally, since A\paz (AR B) = Anaz(A) Amaz(B),
we have Aoz ([Q, R ® [S,T]) < 4.



Combining all of this together,

(X?) = (AI+[Q,R®I[S,T))
44 Amaz ([Q, R ® [S,T7)
8.

IA A

. This is the desired result.

4: See attached diagram.

5: As mentioned in the hint, we can do this in O(y/n) or O(logn) work
bits, each with O(n) gates. We'll describe the construction for O(y/n).

We know from class that we can design a y/n-controlled U gate using
v/n work bits and O(y/n) gates. We'll need 2y/n work bits. The first \/n
bits will be used for each y/n-controlled gate. The second /n bits will be
used as follows. Divide the n control bits into \/n groups of \/n bits each.
Using y/n-controlled Nots and the first /n work bits, set a work bit to one
for each set of y/n control bits. When we have done this for each group, we
will use the second set of work bits as control for a y/n-controlled U gate
acting on the target bit. Finally, we need to reverse the operations to erase
the work bits. Since the control-NOT is its own inverse, we simply repeat
the task.

See attached diagram.
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