
18.435/2.111 Homework 3 Solutions

1a:
k∑

i=1

Ei =
k∑

i=1

TΠiT
† (1)

= T (
k∑

i=1

Πi)T † (2)

= TT † (3)
= In (4)

1b: I have received feedback that this problem was confusing in terms
of dimensions, so I will try to be precise. The confusion arises when we
try to interpret a ket |v〉 in terms of the more familiar vector or n-tuple
[v1 v2 · · · vn]T or when we interpret an operator as a familiar matrix.
Both the matrix and the vector representations for operators and kets arise
when we define a basis for the space of interest. If we define a basis {|i〉}i=1···d
we can say that Hd is the span of this basis. We can further define the space
Hn as the span of the first n kets of the basis. If we want to represent |v〉
as a vector, we can do it in this basis by defining vi = 〈i|v〉.

Similarly, for any operator A : Hd 7→ Hd, we can fully describe it by
its action on the basis kets {|i〉}d

i=1. We define the matrix elements Aij =
〈i|A |j〉 and we can always write the operator as A =

∑
ij Aij |i〉 〈j|. Let’s

interpret T as an operator. We can see from the matrix elements that
T =

∑n
i=1 |i〉 〈i|.

Now to the problem of interest. We have been told that |v〉 is in the
subspace generated by the first n basis vectors, i.e. vi = 0 for i > n. Viewed
in terms of its basis elements, it should be clear that T |v〉 = |v〉. In that
case, we insert T on either side of Πi and see the desired equality:

〈v|Πi |v〉 = 〈v|TΠiT |v〉 = 〈v|Ei |v〉 (5)

You might complain that I’ve left off the adjoint †. When we interpret T in
bra-ket notation, as above, we can see that T = T †.

I can see why this may be confusing. It may be easier to see if we were
to rewrite the desired equation as

Hd
〈v|Πi |v〉Hd

= Hn〈v|Ei |v〉Hn
(6)

where I labelled with the bras and kets with subscripts indicating which
space they live in. In that case, T is defined as T =

∑n
i=1 |i〉HnHd

〈i|. We

1

can see that T 6= T †. In this form, we should derive the desired result
by noting that when |v〉Hd

is spanned by the first n basis vectors, we have
|v〉Hn = T †|v〉Hn = T †T |v〉Hd

. Using this, we can get

Hd
〈v|Πi|v〉Hd

= Hd
〈v|T †TΠiT

†T |v〉Hd
= Hn〈v|Ei|v〉Hn (7)

1c: First, let’s understand the probabilities associated with the k + 1
outcomes of the consecutive projective measurement. The first measurement
has two outcomes, namely N and NOT N . We can state p(N) = 〈ψ|T †T |ψ〉
and p(NOT N) = 〈ψ| (I − T †T) |ψ〉 = 1− p(N). Now, to derive the proba-
bilities of the subsequent measurement (for if we observed outcome N), first
let’s write down the resultant state after outcome N : (T †T)/

√
p(N) |ψ〉.

From here, we can write the conditional probabilities for the k outcomes
associated with Πi:

p(i|N) =
〈ψ|T †TΠiT

†T |ψ〉
p(N)

. (8)

We use the definition of conditional probability to conclude

p(i) = p(i|N)p(N) = 〈ψ|T †TΠiT
†T |psi〉 . (9)

Combining these, we can define a POVM by the k + 1 operators {I −
T †T, T †TΠiT

†T}. These form a valid POVM which we can see by sum-
ming them to the identity:

I − T †T +
k∑

i=1

T †TΠiT
†T = I − T †T + T †T (

k∑

i=1

Πi)T †T (10)

= I − T †T + T †T (11)
= I. (12)

2: Let’s first define what we mean by E1/2. We can see by its construc-
tion that E is a positive matrix (since it is defined as E = A†A), so we know
that it can be written as E = V †DV , where V is unitary and D is a diag-
onal matrix where the diagonal entries are non-negative real numbers. By
convention, we write the diagonal elements of D in descending order. This
is the spectral decomposition of E. We define E1/2 ≡ V †D1/2V . (This defi-
nition is unique if E has distinct eigenvalues, but this will not be important
for the existence proof we need here.)

Now let’s write down the singular value decomposition of A = USW ,
where U and W are unitary and S is a diagonal matrix with non-negative real

2

diagonal entries. Again, we write the diagonal elements of S in descending
order. By writing E = A†A = W †SU †USW = W †S2W, we see that S =
D1/2.

If we write A = UD1/2W = UWW †D1/2W , we can define U ′ = W †U †

and we see that U ′A = W †U †UWW †D1/2W = W †D1/2W . This is what we
wanted to show, as the left hand side is E1/2. (Note, we haven’t claimed
W = V . This is only true the eigenvalues of E are distinct and E1/2 is
uniquely defined. This is a technicality that is not too important to our
purposes but is certainly worth understanding.)

3: Let’s start by noting that Q2 = R2 = S2 = T 2 = I. This follows
immediately from the fact that the eigenvalues are ±1. With this, the first
result is straight algebra:

(Q ⊗ S + R⊗ S + R⊗ T −Q⊗ T)2

= ((R + Q)⊗ S + (R−Q)⊗ T)2

= (Q + R)2 ⊗ I + (R−Q)2 ⊗ I

+(R + Q)(R−Q)⊗ ST + (R−Q)(R + Q)⊗ TS

= 4I ⊗ I + QR⊗ I + RQ⊗ I −QR⊗ I −RQ⊗ I

+(R2 −Q2 −RQ + QR)⊗ ST + (R2 −Q2 −QR + RQ)⊗ TS

= 4I + QR⊗ ST −RQ⊗ ST −QR⊗ TS + RQ⊗ TS

= 4I + [Q,R]⊗ ST − [Q,R]⊗ TS

= 4I + [Q,R]⊗ [S, T].

The bound is easiest to see if we define

X = Q⊗ S + R⊗ S + R⊗ T −Q⊗ T.

We know that the variance of a random variable is non-negative, so 〈X2〉 −
〈X〉2 ≥ 0. We rearrange this and take the square root to get 〈X〉 ≤ 〈X2〉1/2.
So to finish the proof of the bound, we need to show that 〈X2〉 ≤ 8.

To continue, let’s remind ourselves about the meaning of the notation
〈A〉. Above, I used it as the expected value. This is a shorthand referring
to the expected value of an observable (i.e. Hermitian operator) A when
the quantum state is |ψ〉: 〈A〉 = 〈ψ|A |ψ〉. It should be clear from linear
algebra that 〈A〉 ≤ λmax(A) where λmax(A) is the largest eigenvalue of A.

Now let’s look at λmax([Q,R]). Writing out the commutator, we can see
that λmax(QR − RQ) ≤ λmax(RQ) + λmin(RQ) ≤ 2. A similar argument
shows that λmax([S, T]) ≤ 2. Finally, since λmax(A⊗B) = λmax(A)λmax(B),
we have λmax([Q,R]⊗ [S, T]) ≤ 4.

3

Combining all of this together,

〈X2〉 = 〈4I + [Q,R]⊗ [S, T]〉
≤ 4 + λmax([Q,R]⊗ [S, T])
≤ 8.

. This is the desired result.
4: See attached diagram.
5: As mentioned in the hint, we can do this in O(

√
n) or O(log n) work

bits, each with O(n) gates. We’ll describe the construction for O(
√

n).
We know from class that we can design a

√
n-controlled U gate using√

n work bits and O(
√

n) gates. We’ll need 2
√

n work bits. The first
√

n
bits will be used for each

√
n-controlled gate. The second

√
n bits will be

used as follows. Divide the n control bits into
√

n groups of
√

n bits each.
Using

√
n-controlled Nots and the first

√
n work bits, set a work bit to one

for each set of
√

n control bits. When we have done this for each group, we
will use the second set of work bits as control for a

√
n-controlled U gate

acting on the target bit. Finally, we need to reverse the operations to erase
the work bits. Since the control-NOT is its own inverse, we simply repeat
the task.

See attached diagram.

4

	hw3_solutions.pdf
	hw 3 figs 4-5.pdf

