
18.435/2.111 Homework 2 Solutions

1: Let’s begin with |x+〉. Both the probability and the residual state
can be obtained by computing the projection of the GHZ state onto |x+〉 in
the first qubit.

|ψ〉23 = 1〈x + | 1√
2
(|000〉+ |111〉)

=
1
2
(1〈0|+ 1〈1|)(|000〉+ |111〉)

=
1
2
(|00〉+ |11〉)

(Notice that there is an implied identity operator in the above equation.
The desired projection could be written as 〈x+| ⊗ I ⊗ I to indicate 〈x+|
on just the first qubit. This is usually dropped for convenience. To avoid
confusion, it is often acceptable simply to label the kets with subscripts.)
The probability of measuring |x+〉 is then p(x+) = |〈ψ|ψ〉| = 1/2 and the
residual state of the second and third qubits is the renormalization of |ψ〉 to
unit length:

1√
2
(|00〉+ |11〉). (1)

We can calculate |x−〉 in the same way:

|ψ〉23 = 1〈x− | 1√
2
(|000〉+ |111〉)

=
1
2
(1〈0| − 1〈1|)(|000〉+ |111〉)

=
1
2
(|00〉 − |11〉).

From this we see that p(x−) = 1/2 and the residual state is

1√
2
(|00〉 − |11〉). (2)

2: The probability of the GHZ state being measured in the state |ψ〉 is
given by

p(ψ) = | 〈ψ| 1√
2
(|000〉+ |111〉)|2. (3)

We can see from this equation that we need to compute the two inner prod-
ucts 〈ψ|000〉 and 〈ψ|111〉. With a little thought, we can see that

〈x± x± x± |GHZ〉 =
1
4
(〈000|000〉 ± 〈111|111〉) (4)
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where the ± will be + for an odd number of x+ and − for an even number
of x+. Thus, the probability of measuring and even number of x+ is 0.

For the first qubit in x± and the second and third in y±, let’s write out
the inner products for each of the even number of + states:

〈x+, y+, y − |GHZ〉 =
1
4
(〈000|000〉+ (+1)(i)(−i)〈111|111〉) = 1/2

〈x+, y−, y + |GHZ〉 =
1
4
(〈000|000〉+ (+1)(−i)(i)〈111|111〉) = 1/2

〈x−, y+, y + |GHZ〉 =
1
4
(〈000|000〉+ (−1)(i)(i)〈111|111〉) = 1/2

〈x−, y−, y − |GHZ〉 =
1
4
(〈000|000〉+ (−1)(−i)(−i)〈111|111〉) = 1/2.

Squaring these and summing, we see that the probability of getting an even
number of + states is 1.

3a: Let’s assume the opposite. That is assume A1 = 1, A2 = A3 = A4 =
−1. We can see that this is a contradiction by noting that A1A2A3A4 = −1,
but when we multiply it out in terms for fi(·), we get

A1A2A3A4 = f1(x)2f1(y)2f2(x)2f2(y)2f3(x)2f3(y)2 = 1. (5)

Thus, either A1 = −1 or one of A2, A3, or A4 is −1, which is the desired
result.

3b: This problem was made more confusing by an inadvertent choice in
problem 2. While the same arguments hold as the problem was given, it is
significantly easier to see if the state of interest were 1√

2
(|000〉−|111〉). If we

were to redo problem 2 for this state, we would determine that the probabil-
ity of an even number of + states when measuring in the (x±, x±, x±) basis
is 1, and the probability of an even number of + states when measuring in
the (x±, y±, y±) is 0.

We then equate measuring the ith qubit to fi(·) and the argument in-
dicates whether we are measuring in the x or y direction. The two cases
from 2 now correspond to A1 and A2. Further, it should be clear given
a little thought that A3 and A4 have the same behavior as A2 when inter-
preted this way. But here we see a contradiction! Now A1 is always positive,
and A2, A3, and A4 are always negative, which contradicts what we proved
in 3a. This is an indication of fundamentally non-classical behavior of the
measurement of an entangled state.
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4:

JxJy =
1
4
(σx ⊗ id + id⊗ σx)(σy ⊗ id + id⊗ σy) (6)

=
1
4
(σxσy ⊗ id + σx ⊗ σy + σy ⊗ σx + id⊗ σxσy) (7)

=
1
4
(iσz ⊗ id + i(id)⊗ σz + σx ⊗ σy + σy ⊗ σx) (8)

JyJx =
1
4
(σy ⊗ id + id⊗ σy)(σx ⊗ id + id⊗ σx) (9)

=
1
4
(σyσx ⊗ id + σx ⊗ σy + σy ⊗ σx + id⊗ σyσx) (10)

=
1
4
(−iσz ⊗ id− i(id)⊗ σz + σx ⊗ σy + σy ⊗ σx) (11)

We have used the fact that σxσy = iσz and σyσx = −iσz. We can now write
the commutator as

JxJy − JyJx =
1
4
(2iσz ⊗ id + 2i(id)⊗ σz) (12)

= iJz. (13)

We could continue with the computations through similar brute force algebra
(and you will receive full credit if you did), but it is more useful to introduce
a commutator identity that comes in handy:

[A,BC] = B[A,C] + [A,B]C (14)

Furthermore, from the exact same calculations that we did with [Jx, Jy], we
compute that [Jx, Jz] = −iJy. We can use these facts to compute the desired
commutators:

JxJ2
y − J2

y Jx = [Jx, J2
y ] (15)

= Jy[Jx, Jy] + [Jx, Jy]Jy (16)
= iJyJz + iJzJy (17)

JxJ2
z − J2

z Jx = [Jx, J2
z ] (18)

= Jz[Jx, Jz] + [Jx, Jz]Jz (19)
= −iJzJy − iJyJz (20)
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From these we can see that

[Jx, J2
x + J2

y + J2
z ] = iJyJz + iJzJy − iJzJy − iJyJz = 0, (21)

which was stated in class.
5: First let’s calculate RT and TR:

RT =




0 0 1
e2πi/3 0 0

0 e4πi/3 0


 (22)

TR =




0 0 e4πi/3

1 0 0
0 e2πi/3 0


 = e4πi/3RT (23)

From this observation, we can state several others that will be of value in
the next section:

RT = e2πi/3TR (24)
RaT = e2aπi/3TRa (25)

RaT b = e2abπi/3T bRa. (26)

Also, we should note that R and T are both unitary, so R−1 = R† and
T−1 = T †. Also note the T 3 = R3 = I.

To show orthogonality of the given states, let’s write the inner product
between any two of them. We’ll use the parameters a, b, a′, and b′.

1
3
(〈00|+ 〈11|+ 〈22|)(Ra′T b′ ⊗ I)†(RaT b ⊗ I)(|00〉+ |11〉+ |22〉)

=
1
3
(〈00|+ 〈11|+ 〈22|)T−b′Ra−a′T b ⊗ I(|00〉+ |11〉+ |22〉) (27)

=
e2b(a−a′)πi/3

3
(〈00|+ 〈11|+ 〈22|)T b−b′Ra−a′ ⊗ I(|00〉+ |11〉+ |22〉)

Let’s now apply the R and T operators to the kets. This is easier done by
understanding the qualitative behavior of each. Note that R applies the
phase e2πi/3 to |1〉 and e4πi/3 to |2〉. Note that T adds 1, modulo 3, to a ket:
T |i〉 = |(i + 1)mod3〉. Using this, we can write the above inner product as

e2b(a−a′)πi/3

3
(〈00|+〈11|+〈22|)(∣∣b− b′

〉 |0〉+e2π(a−a′)i/3
∣∣1 + b− b′

〉 |1〉+e4π(a−a′)i/3
∣∣2 + b− b′

〉 |2〉)
(28)
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Let’s call this quantity X. For a = a′ and b = b′, X = 1, which shows
that the states are of unit length. For b 6= b′, we can easily see that all of
the kets on the right are orthogonal to the bras on the left. For b = b′ and
a 6= a′,

X ∝ 1 + e2π(a−a′)i/3 + e4π(a−a′)i/3 = 1 + e2πi/3 + e4πi/3 = 0. (29)

This proves the orthonormality of the states.
6: We have already done the heavy lifting for the superdense coding

in the orthogonality proof of problem 5. Alice and Bob begin with the
entangled qutrit state

1√
3
(|00〉+ |11〉+ |22〉) (30)

which we saw in the last problem. Alice can then send one of the nine
messages encoded in {a, b} by applying RaT b to her qutrit, and sending it
to Bob. We have already shown that these 9 states form an orthonormal
basis, which means that Bob can perfectly distinguish between them. He
thus receives the classical message with only the transmission of a single
qutrit.
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