18.435/2.111 Homework # 2

Due Thursday, September 28

Let us recall the definitions

$$|z+\rangle = |0\rangle$$

$$|z-\rangle = |1\rangle$$

$$|x+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|x-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

$$|y+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$

$$|y-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$$

1: Suppose you have three qubits in the GHZ state

$$\frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$

and you measure the first one in the $|x\pm\rangle$ basis. What are the probabilities for each measurement result, and what is the residual state on the second and third qubits in each case?

2: Suppose we have the GHZ state above, and we measure all three qubits in the $|x\pm\rangle$ basis. What is the probability we obtain an even number of + states in the result? Suppose we measure one in the $|x\pm\rangle$ basis and the other two in the $|y\pm\rangle$ basis. What is the probability we obtain an even number of + states in the result?

3a: (Note that this problem has no quantum mechanics in it.) Suppose f_1 , f_2 , and f_3 are functions mapping the set $\{x,y\}$ to the set $\{1,-1\}$. Define

$$A_1 = f_1(x)f_2(x)f_3(x),$$
 $A_2 = f_1(x)f_2(y)f_3(y)$
 $A_3 = f_1(y)f_2(x)f_3(y),$ $A_4 = f_1(y)f_2(y)f_3(x).$

Show that either $A_1 = -1$ or one of A_2 , A_3 , A_4 equals +1.

3b: What is the relationship between problem 2 and problem 3a?

More problems on reverse.

4: Suppose we have two qubits. Consider the observables

$$J_x = \frac{1}{2} (\sigma_x \otimes id + id \otimes \sigma_x)$$

$$J_y = \frac{1}{2} (\sigma_y \otimes id + id \otimes \sigma_y)$$

$$J_z = \frac{1}{2} (\sigma_z \otimes id + id \otimes \sigma_z)$$

Compute

$$J_xJ_y-J_yJ_x.$$

Can you express the result in terms of J_z ? Compute

$$J_x J_y^2 - J_y^2 J_x,$$

and

$$J_x J_z^2 - J_z^2 J_x.$$

The results should show you that J_x commutes with $J_x^2 + J_y^2 + J_z^2$, as stated in class.

5: Consider a qutrit, i.e., a three-state quantum system with basis states $|0\rangle$, $|1\rangle$, $|2\rangle$. Let

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{2\pi i/3} & 0 \\ 0 & 0 & e^{4\pi i/3} \end{pmatrix}$$

and

$$T = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

Find the relationship between RT and TR. Show that the nine states

$$\frac{1}{\sqrt{3}}(R^a T^b \otimes I)(|00\rangle + |11\rangle + |22\rangle)$$

with $0 \le a, b \le 2$ are all orthogonal.

6: Consider a qutrit, i.e., a three-state quantum system with basis states $|0\rangle$, $|1\rangle$, $|2\rangle$. Show how you can use superdense coding to transmit nine distinct possibilities using one qutrit.