
18.435/2.111 Homework 10 Solutions

1: The Pauli matrices, together with the identity, form a basis for all
qubit operations. From this, we can quickly see that the operator elements
E0 and E1 can be represented as E0 = 1+

√
1−γ

2 I + 1−√1−γ
2 σz and E1 =√

γ/2σx+i
√

γ/2σy. The intuitive answer, which turns out to be true, is that
the probability of measuring each of these errors is the magnitude squared
of each coefficient. Thus P (No Error) = (1+

√
1−γ)2

4 , P (σz) = (1−√1−γ)2

4 ,
P (σx) = γ

4 , and P (σy) = γ
4 .

I’ve said this is the right answer, now I’d like to justify this. For a code
that can correct for one error, that implies that the subspaces corresponding
to a pauli error on the second qubit are all orthogonal. Let’s define PC as
the projection operator onto the code subspace. The subspace of a pauli
error σi on the second qubit is then σiPCσi (remembering that the paulis
are Hermitian, so I’ve dropped the †). I should probably carry along a
subscript 2 to indicate that the action is on the second qubit, but this will
be cumbersome, so please just understand all of the operations for the rest
of this problem to be on the second qubit, with identity on the rest. The
syndrome measurement then projects onto each of these subspaces. Let’s do
the case of projecting onto the σzPCσz subspace. Let’s call the input state
ρ, and remember that the input lies on the codespace, so ρ = PCρPC . Let’s
call the channel (i.e. the amplitude damping error on the second qubit) as
E .

The probability of measuring a σz error is then

trσzPCσzE(ρ) =
2∑

k=1

trσzPCσzEkρE†
k (1)

= trσzPCσz(α0I + αzσz)PCρPC(α∗0I + α∗zσz) (2)
+ trσzPCσz(αxσx + αyσy)PCρPC(α∗xσx + α∗yσy). (3)

Here I have called the coefficients derived above as α0, αx, etc. I’ve also
inserted a PC around the input density ρ. Rather than write out all of the
terms, let’s look at a few terms from which we will quickly see the pattern
develop. First, the αz term:

trσzPCσzαzσzPCρPCα∗zσz = |αz|2trPCρPc = |αz|2. (4)

Here we’ve used the cyclic property of the trace and we’ve gotten the desired
probability. So now we need to show that all of the other terms have to go
to zero. Let’s look at a single cross term:

trσzPCσzαzσzPCρPCα∗0I = 0, (5)
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since PC(σzPCσz) = 0 is the product of projectors onto orthogonal sub-
spaces. In fact, this same trick causes all of the remaining terms to cancel,
and we see that the intuitive result is in fact the right result.

2a:
1√
2
〈vθ| 〈vθ| (|01〉 − |10〉) =

1√
2
(cos θ sin θ − cos θ sin θ) (6)

= 0. (7)

2b: Let’s write out |vθ〉 |vθ〉 〈vθ| 〈vθ| as a 4× 4 matrix:



cos4 θ cos3 θ sin θ cos3 θ sin θ cos2 θ sin2 θ
cos3 θ sin θ cos2 θ sin2 θ cos2 θ sin2 θ cos θ sin3 θ
cos3 θ sin θ cos2 θ sin2 θ cos2 θ sin2 θ cos θ sin3 θ
cos2 θ sin2 θ cos θ sin3 θ cos θ sin3 θ sin4 θ


 (8)

From this, we see that we need to evaluate 5 different integrals, given below:

1
π

∫ π

θ=0
cos4 θdθ =

3
8

(9)

1
π

∫ π

θ=0
cos3 θ sin1 θdθ = 0 (10)

1
π

∫ π

θ=0
cos2 θ sin2 θdθ =

1
8

(11)

1
π

∫ π

θ=0
cos1 θ sin3 θdθ = 0 (12)

1
π

∫ π

θ=0
sin4 θdθ =

3
8
. (13)

Filling in the numbers, we have the density matrix

1
8




3 0 0 1
0 1 1 0
0 1 1 0
1 0 0 3


 . (14)

Now, note that
∣∣vθ+π/2

〉
= cos(θ + π/2) |0〉+ sin(θ + π/2) |1〉 = − sin θ |0〉+

cos θ |1〉. By a similar set of calculations to those above, we find that
|vθ〉 |vθ〉

〈
vθ+π/2

∣∣ 〈
vθ+π/2

∣∣ is given by



cos2 θ sin2 θ − cos3 θ sin θ − cos3 θ sin θ cos4 θ
cos θ sin3 θ − cos2 θ sin2 θ − cos2 θ sin2 θ cos3 θ sin θ
cos θ sin3 θ − cos2 θ sin2 θ − cos2 θ sin2 θ cos3 θ sin θ

sin4 θ − cos θ sin3 θ − cos θ sin3 θ sin2 θ cos2 θ


 , (15)
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which when we integrate gives

1
8




1 0 0 3
0 −1 −1 0
0 −1 −1 0
3 0 0 1


 . (16)

Now we want to write these in terms of the Bell states |β1〉 = 1√
2
(|00〉+|11〉),

|β2〉 = 1√
2
(|00〉 − |11〉), |β3〉 = 1√

2
(|01〉 + |10〉), and |β4〉 = 1√

2
(|01〉 − |10〉).

We can see these to be:

1
π

∫ π

θ=0
|vθ〉 |vθ〉 〈vθ| 〈vθ| dθ =

1
2
|β1〉 〈β1|+ 1

4
|β2〉 〈β2|+ 1

4
|β3〉 〈β3|

1
π

∫ π

θ=0
|vθ〉 |vθ〉

〈
vθ+π/2

∣∣ 〈
vθ+π/2

∣∣ dθ =
1
2
|β1〉 〈β1| − 1

4
|β2〉 〈β2| − 1

4
|β3〉 〈β3| .

2c: Let’s write out the desired integral and apply the results from (2b):

1
π

∫ π

θ=0
|eθ〉 〈eθ| dθ =

1
π

∫ π

θ=0
dθ(|s|2 |vθ〉 |vθ〉 〈vθ| 〈vθ|+ st∗ |vθ〉 |vθ〉

〈
vθ+π/2

∣∣ 〈
vθ+π/2

∣∣ (17)

+ s∗t
∣∣vθ+π/2

〉 ∣∣vθ+π/2

〉 〈vθ| 〈vθ|+ |t|2 ∣∣vθ+π/2

〉 ∣∣vθ+π/2

〉 〈
vθ+π/2

∣∣ 〈
vθ+π/2

∣∣)
= (|s|2 + |t|2)(1

2
|β1〉 〈β1|+ 1

4
|β2〉 〈β2|+ 1

4
|β3〉 〈β3|)

+ (st∗ + s∗t)(
1
2
|β1〉 〈β1| − 1

4
|β2〉 〈β2| − 1

4
|β3〉 〈β3|)

Since {|βi〉} form a basis for 2 qubits, we know that
∑4

i=1 |βi〉 〈βi| = I, so we
want to choose s and t such that the quantity above becomes

∑3
i=1 |βi〉 〈βi|.

A little algebra shows that we want |s|2 + |t|2 = 3 and st∗ + s∗t = −1. One
such choice for s and t is s = 1+

√
2√

2
and t = 1−√2√

2
.

3a: We have the following state, and we want to choose α in such a way
that it is a product state:

s |00〉 − |t| |11〉+
α√
2
|01〉 − α√

2
|10〉 . (18)

Notice that s and t are real and have opposite signs. I have written the t as
−|t| for convenience as it is easier to see the proper factorization. If this is
going to be a product state, it will be of the form

(a1 |0〉 − a2 |1〉)(a3 |0〉+ a4 |1〉) (19)
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where the ai are real, positive numbers. Furthermore, we can see that
a1a3 = s, a2a4 = |t|, and a2a3 = a1a4 = α√

2
. We can see that this is satisfied

by a1 = a3 =
√

s and a2 = a4 =
√
|t|. The final factorization is then

(
√

s |0〉 −
√
|t| |1〉)(√s |0〉+

√
|t| |1〉). (20)

From this, we can read off the desired values. We compute c by finding the
length of the above vector:

c2 = (s + |t|)2 (21)

⇒ c = s + |t| = 1 +
√

2√
2

+
−1 +

√
2√

2
= 2. (22)

We can read the value of α directly from the factorization:

α =
√

2
√

s|t| =
√

2

√
(1 +

√
2)√

2
(−1 +

√
2)√

2
= 1. (23)

Finally, the inner product (remember to normalize!) is:

〈vθ1 |vθ2〉 =
s− |t|

c
=

1√
2
. (24)

3b: This restriction on α arises from the constraint that all elements in
a POVM add (or integrate in the continuous case) to I. If we were to allow
α > 1, then our POVM elements would add up to greater than I, which is
not allowed.

3c: The only classical communication that needs to be made is the angle
of projection θi. Alice and Bob need to communicate this result so that their
operations |θi〉 〈θi| are always a fixed angle apart, which angle is given by
|〈θ1|θ2〉|.

In the case we’re considering, we can say a little more. We calculated
the inner product in (3a), and from this, we know that the required angle
between the measurements is π/4. The fact that the angle is π/4 means
that π/2 minus the angle is still π/4. If Alice and Bob choose bases at π/4
apart, they can measure, and no matter which outcome they get, the sign
in the inner product will always by 1/

√
2.

4: An easy way to see this is to note that P± = I±σx
2 . Using this, we

can show the equivalence of the two representations:

(1− 2p)ρ + 2pP−ρP− + 2pP+ρP+ = (1− 2p)ρ +
p

2
(I − σx)ρ(I − σx) +

p

2
(I + σx)ρ(I + σx)

= (1− p)ρ + pσxρσx. (25)
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5: Note that the eigenvectors of X1X2X3 are 1√
2
(|000〉 ± |111〉) with

eigenvalues±1. From this we can see that the eigenvectors of X1X2X3X4X5X6

with eigenvalue +1 are 1
2(|000〉 ± |111〉)(|000〉 ± |111〉) and the eigenvectors

with eigenvalue −1 are 1
2(|000〉 ± |111〉)(|000〉 ∓ |111〉). Thus, we measure a

+1 when the phases of the two blocks are the same, and a −1 when they
are opposite. By the same argument X4X5X6X7X8X9 compare the phases
of the second and third blocks. Thus, the four outcomes {1,−1} ⊗ {1,−1}
from measuring these two observables correspond to phase flips on any of
the 9 qubits.

6: First, note that the error is the same no matter which of the first
three qubits receives the phase flip: Zi(|000〉 ± |111〉) = (|000〉 ∓ |111〉) for
i = {1, 2, 3}. From this, we see that the recovery operation Z1Z2Z3 flips the
phase three times, which is equivalent to flipping it once. This illustrates
why the Shor code is a degenerate code, as is discussed in the textbook.

7a: The outcome of a single rotation is cos θ |0〉+sin θ |1〉. If we rotate n
times, the state is cosnθ |0〉+sin nθ |1〉. Thus for the probability of measuring
a |1〉 to be approximately 1

4 , we need sin2 nθ ≈ 1
4 ⇒ nθ ≈ π

6 ⇒ n ≈ π
6θ .

7b: If we measure after each rotation, we are in fact performing a bit flip
operation with the probability of flipping p = sin2 θ. We are looking for the
number of trials before the probability of a single flip is approximately 1

4 .
This is easiest done if we look for the number of trials where the probability
of not flipping is 3

4 .

3
4

≈ cos2n θ (26)

⇒ log
3
4

≈ 2n log(cos θ) (27)

⇒ n ≈ log 3
4

2 log(cos θ)
(28)

≈ .27
θ2

(29)

The last line comes from using the small angle approximation for cos θ and
the Taylor expansion for log(1− θ2

2 ) ≈ − θ2

2 .
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