18.310 lecture notes Fall 2011

How to sort?
Prof. Peter Shor

1 Sorting Algorithms

Suppose we have n objects that we need to sort according to some ordering. These could be integers
or real numbers we want to sort numerically, words we want to sort alphabetically, or diamonds
we want to sort according to their size. The basic operation we can perform is to take two of these
objects and compare them; we will then know which one is bigger and which is smaller. In fact,
we typically do not compare the objects themselves, but rather an attribute or key of them. This
could be their weight, value, size, etc. Comparing two keys does not necessarily mean comparing
them numerically, but we have a way to tell which is bigger. For example, if we want to sort objects
according to their weight, we only need to have at our disposal one of these old-fashioned scales,
and not a modern one that displays the weight of an object.

v

In this discussion, we will stick to binary comparisons, that is, comparisons of one key with
another. With an old-fashioned scale, for example, one could compare several objects at once, but
we will not allow this. We also assume that no two keys are equal. In other words, when comparing
two keys, we assume that only 2 outcomes (rather than 3) are possible since one of them will be
strictly smaller than the other.

Our n keys are given to us in an arbitrary order. We want to rearrange them in increasing
order, according to our sense of order. If we are given the following input of numerical values as
keys

628125110

then the output would be
12568 10 12.

Our goal is to describe a method, or scheme, or algorithm that will always terminate with
a correct output, irrespective of what input it is given. It should always work. And we would
like our algorithm to perform our sorting task with the least amount of effort. But how will we

L2-1

evaluate the performance of a sorting algorithm? Well, clearly it will take more operations to sort
1,000, 000 keys rather than just a mere 1,000 keys. So we certainly want to evaluate its behavior
as a function of n, the number of keys to sort. The number of operations will also depend on the
input itself; n already sorted keys seem much easier to sort than n keys given in an arbitrary order.
We will usually, but not always, adopt a worst-case perspective. This means we judge a sorting
algorithm based on the number of operations it performs on the worst possible input of n keys.
The worst input, of course, depends on the algorithm itself. One can view this worst-case analysis
as a game with a malicious adversary. Once he (or she) knows the precise algorithm we will be
using, (s)he will feed an input that makes our task as hard as possible. In practice, this worst-case
type of analysis might be very conservative as the behavior on most inputs might be far from the
worst-case behavior, but sitting right now on a flight over the atlantic, I very much hope that a
worst-case analysis of all the algorithms used in the control of the plane was performed...

1.1 Lower bound on number of comparisons

The first question we ask is, given n keys, can we find useful upper and lower bounds on the number
of (binary) comparisons we need to perform in order to sort them completely? We can find a lower
bound by using the pigeonhole principle: the number of possible outcomes should be at least as
large as the number of possible answers to our sorting problem. If we never perform more than k
comparisons then the number of possible outcomes is at most 2* (remember, we are not allowing
equal keys). On the other, given n keys, one of them must be the smallest, anyone of the remaining
n — 1 keys can come next, and so on, resulting in n! possible answers. Therefore, the pigeonhole
principle tells us that we have n! < 2F; otherwise there would be two different orderings that give
the same list of answers to the comparisons. This means that, for any correct sorting algorithm,
we have k > log(n!) where the log is taken in base 2. Since k must be an integer, we must therefore
have that
k> [log(n!)]

where [z] denotes the smallest integer greater or equal to x.
To get an estimate of logy(n!), we can use the easy fact that

or even better the more precise Stirling’s formula which gives

n! ~V2mn (ﬁ)n

e

Thus, we see that for large values of n, logs(n!) behaves like nlogy(n) (the other terms grow more
slowly than nlogn).

L2-2

The table below shows this lower bound for a few valus of n:

[n | k

2 >1
3 >3
4 >3
) > 7
6 > 10
7 > 13

100 | > 525

1000 | > 8530

Exercise. Show that for n =5, it is possible to sort using 7 comparisons (tricky).

1.2 Sorting algorithms

There are many different approaches for sorting in an efficient way. We can divide them into several
general approaches.

1. Sorting by insertion. The principle is to maintain a sorted list of keys. Initially we start
with just one key. Once we have a sorted list of k keys, we can insert a new key into it in
order to obtain a sorted list of k + 1 keys, and repeat the process. This leads to INSERTION
SORT and we will discuss later how to do the insertion.

2. Sorting by merging. The principle here is that we have two sorted lists, it is rather easy
to take their union and create a merged sorted list. This leads to MERGE SORT, and we will
describe it in more details as well.

3. Sorting by pulling off the largest (or smallest) element. If we have an efficient way to
extract the largest element then we can repeat the process and obtain a sorted list of elements.
This leads to several sorting algorithms; we will describe HEAP SORT, a rather beautiful and
efficient way for sorting.

4. Sorting by inserting keys one at a time in their correct position. The idea here is
that we place a key x in its correct position, that means that all keys smaller than it come
before x and all keys larger than x come after it. Now we can simply reiterate on the two
sublists that come before and after x. This leads to QUICKSORT.

1.2.1 INSERTION SORT

To describe INSERTION SORT, we only need to say how we will go about inserting a new key, call
it x, into a sorted list of size k.

L2-3

Let the sorted keys be denoted as keyy, keyo, - - - , keyr. One possibility would be to compare x
with each key, from smallest to largest, and insert it just before the first one that is larger than x
(or after the last one, if no such key exists). This would not be very efficient since we would make
k comparisons in the worst-case for one insertion, and thus about 1 +2+---+ (n —1) = %
comparisons over all insertions in the worst-case.

Another possibility is to compare x to a middle key, say the one in position m = |(k + 1)/2].
If x is smaller we want to move all the keys from this middle and beyond over by 1 to make room
for x, and insert x into the list keyy, keys, - - - , keym—_1.

If x is bigger, we don’t move anything but now insert = into the right hand half of the list
keYym+1, -, keyi. This can be shown to require a minimum number of comparisons, but it requires
lots of key movement, which can be bad if key movement has a cost as it happens when implementing
such a sorting algorithm in a computer. It is a fine way when sorting a hand of cards.

1.2.2 MERGE SORT

The MERGE SORT approach involves dividing the n keys into n/2 pairs, then sorting each pair, then
combining the sorted pairs into sorted groups of size 4, then combining these into sorted groups of
size 8, etc. For example, consider the following 8 keys to sort:

6 28125 1 10 11.

We can represent the groupings and the mergings as follows:

\/ \/ \/1\/

[10 11]

N/ N/

2 6 8 12] [1 5 10 11]

\/

1256810 11 12]

At each stage, you take two sets of keys of the same size, each of which is already sorted, and
combine them together. Notice that the only candidates for the front element of the merged lists
are the front elements of both lists. Thus, with one comparison, we can find out the front of the
merged list and delete this element from the corresponding list. We again have two sorted lists
left, and can again pull off the smallest of the two fronts. If we keep on doing this until one list
is completely depleted, we will have sorted the union of the two sorted lists into one. And if both
lists have size k, we will have done at most 2k — 1 comparisons. Over each level, we do less than
n comparisons, and since we have roughly log,(n) levels, we get that we perform roughly nlogy(n)
comparisons.

The trouble with this approach is that it requires extra space to put the keys that are pulled
off from the front. Since you do not know which list will be depleted when you merge them, you
can’t use the partially depleted list space very efficiently.

L2-4

1.2.3 HEAP SORT

This is a pull off at the top method that has the virtue that it can sort everything in place,
and performs essentially (up to a small factor) the optimum number of comparisons.

To describe it, we first need to define a heap. A heap is a tree whose nodes contains the keys to
be sorted and which satisfies the conditions that

1. every node has 0, 1 or 2 children,

2. every level from the root down is completely full, except the last level which is filled from the
left,

3. the key stored in any node is greater than the keys of (both of) its children (the heap property).

First, let’s focus on conditions 1. and 2. A heap on 9 elements must therefore have the following
structure:

The first three levels are filled (by 1, 2 and 4 nodes respectively) while the 2 nodes in the last level
are as much to the left as possible. A heap with k full levels will have 14+24+4+-.- 421 =2k 1
nodes.

Here are two (out of many more) valid ways of putting the keys 1 up to 9 into a heap structure
with 9 nodes. We should emphasize that the left and right children of a node serve the same
purpose; both are supposed to have a key smaller than their parent.

L2-5

There is an easy way to store the keys of a heap without drawing the tree. Indeed, if we label
the nodes of the heap from top to bottom, and from left to right in each level (see below), then
notice that the children of the node labelled = will be labelled 2z and 2x + 1 (if they exist). That
allows us to store a heap conveniently as an array of the same length as the number of keys.

S\,
4/ \5 / \7
8/\9

For example, here is a heap and its array representation:

(9)
() O (O[7[8[3 65 [4[2]1]
3 © ©® O

And knowing this array, one can easily rebuild the heap.

For now, let us postpone the discussion of how we initially arrange the given keys so that they
satisfy the heap property. Once we have a heap, the root node contains a key which is larger than
its children, which is larger than its own children, etc, so this means that the root contains the
largest key. So this key (since it is the largest) should be placed at the end of the array. To do
this, we can simply exchange the root key with the last key in the heap, and make this new last
key inactive.

The problem is that the remaining active keys do not quite form a heap; indeed the heap
property may be violated at the root. Let us call this a headless heap. Consider for example the
following heap to the left, and suppose we exchange the root element and the last element to get
the headless heap to the right.

L2-6

(9) (4)
O (8 O (8
(O @ © v O @ &
O30 ®) [o]

The heap poperty is indeed violated at the root. Key 4 is smaller than its children. This can be
fixed rather easily. We can exchange key 4 with the key of its largest child, in this case, this is its
left child with key 8 (but it could have been the right child as well). This gives:

(8)
(4] (6)
O ONONO
(3) [o]

By replacing the key 8 by the key 4, unfortunately, we are now violating the heap property at
the node containing this key 4. In other words, the structure rooted at the node with key 4 is not a
quite a heap but a headless heap. But we know how to fix this. In general, to fix a headless heap,
we compare its root with its two children (by making 2 comparisons). If the root is larger than
both its children, there is nothing to do and we are done. Otherwise, we exchange the root with
the largest child, and proceed to fix the headless heap now rooted at what used to be this largest
child. The headless heap problem has now trickled down one level. In our example, exchanging the
key 4 with 7, we get the following heap, and we have recovered a (real) heap. In general, though,
the headless problem may not end until we have reached a leaf.

L2-7

(8)
(7] (o)
ONONONO
(3) [o]

The array that corresponds to this heap, and the inactive element 9 is

[8[7[6[4][1]2]5]3]9]

In general, the height of a heap is roughly equal to log,(n), and fixing a headless heap therefore
takes at most 2logy(n) comparisons (2 comparisons at each node on the path from the root to a
leaf).

Now that we have another heap (with one fewer key), we can proceed and extract the maximum
of the remaining active keys, which must sit at the root of the heap. Again, we can switch it with
the last active element to get a headless heap:

O OO0
& [

And fix this headless heap problem by trickling it down the tree until we get a real heap:

& O @O ©
& [

L2-8

The array that corresponds to this structure is now:

[7]4]e[3]1]2]5[8]9]

and we have made progress since the last 2 elements are correcly positioned.

Every time we extract an element, we need to perform at most 2logs(n) comparisons, and
therefore we can extract all elements by doing at most 2nlog,(n) elements.

But we have not discussed yet how to create the initial heap. There are two obvious ways to try
it. One is a top-down approach. In this approach, we build up the heap one key at a time, starting
by trying to place that key at the root. Another is a bottom-up approach. In this approach, we
start with a binary tree with the keys placed arbitrarily at the nodes, and fix the levels one at a
time, starting with the nodes closest to the leaves. The bottom-up approach takes roughly cin
time, and the top-down approach takes roughly conlogn time, for some constants ¢; and co.

Here is a sketch of the bottom-up approach: If we look at the leaves alone, they are heaps since
there are no descendents to be bigger than them. If we go up one level then we may have headless
heaps with two levels. And we know how to handle headless heaps! So we make them into heaps by
curing their heads as done above. Now we can go up to the third level from the bottom: including
these keys we now have headless heaps again and we know how to cure them! Each time we extend
our heap property one level up the tree.

How do we cure a headless heap on the kth level of the tree? We’ve already shown how to do
this, but let’s go over it again. If we do two comparisons, we’ve fixed the keys on the kth level, but
we might have created one headless heap on the next level closer to the bottom. We then might
have to apply two compares to this one, and so on. You can figure out how many steps building
the original heap takes in the worst case from this description. It’s only ¢n comparisons, though.

Exercise. Show that the number of comparisons necessary to create a heap in the first place is
a constant times n.

L2-9

