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Basics

Linear Programming deals with the problem of optimizing a linear objective function sub-

ject to linear equality and inequality constraints on the decision variables. Linear program-

ming has many practical applications (in transportation, production planning, ...). It is

also the building block for combinatorial optimization. One aspect of linear programming

which is often forgotten is the fact that it is also a useful proof technique. In this first

chapter, we describe some linear programming formulations for some classical problems.

We also show that linear programs can be expressed in a variety of equivalent ways.

1.1 Formulations

1.1.1 The Diet Problem

In the diet model, a list of available foods is given together with the nutrient content and

the cost per unit weight of each food. A certain amount of each nutrient is required per

day. For example, here is the data corresponding to a civilization with just two types of

grains (G1 and G2) and three types of nutrients (starch, proteins, vitamins):

Starch Proteins Vitamins Cost ($/kg)

G1 5 4 2 0.6

G2 7 2 1 0.35

Nutrient content and cost per kg of food.

The requirement per day of starch, proteins and vitamins is 8, 15 and 3 respectively. The

problem is to find how much of each food to consume per day so as to get the required

amount per day of each nutrient at minimal cost.
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When trying to formulate a problem as a linear program, the first step is to decide

which decision variables to use. These variables represent the unknowns in the problem.

In the diet problem, a very natural choice of decision variables is:

• x1: number of units of grain G1 to be consumed per day,

• x2: number of units of grain G2 to be consumed per day.

The next step is to write down the objective function. The objective function is the

function to be minimized or maximized. In this case, the objective is to minimize the

total cost per day which is given by z = 0.6x1 +0.35x2 (the value of the objective function

is often denoted by z).

Finally, we need to describe the different constraints that need to be satisfied by x1

and x2. First of all, x1 and x2 must certainly satisfy x1 ≥ 0 and x2 ≥ 0. Only nonneg-

ative amounts of food can be eaten! These constraints are referred to as nonnegativity

constraints. Nonnegativity constraints appear in most linear programs. Moreover, not all

possible values for x1 and x2 give rise to a diet with the required amounts of nutrients

per day. The amount of starch in x1 units of G1 and x2 units of G2 is 5x1 + 7x2 and this

amount must be at least 8, the daily requirement of starch. Therefore, x1 and x2 must

satisfy 5x1 +7x2 ≥ 8. Similarly, the requirements on the amount of proteins and vitamins

imply the constraints 4x1 + 2x2 ≥ 15 and 2x1 + x2 ≥ 3.

This diet problem can therefore be formulated by the following linear program:

Minimize z = 0.6x1 + 0.35x2

subject to:

5x1 + 7x2 ≥ 8

4x1 + 2x2 ≥ 15

2x1 + x2 ≥ 3

x1 ≥ 0, x2 ≥ 0.

Some more terminology. A solution x = (x1, x2) is said to be feasible with respect

to the above linear programif it satisfies all the above constraints. The set of feasible

solutions is called the feasible space or feasible region. A feasible solution is optimal if its

objective function value is equal to the smallest value z can take over the feasible region.

1.1.2 The Transportation Problem

Suppose a company manufacturing widgets has two factories located at cities F1 and F2

and three retail centers located at C1, C2 and C3. The monthly demand at the retail
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centers are (in thousands of widgets) 8, 5 and 2 respectively while the monthly supply

at the factories are 6 and 9 respectively. Notice that the total supply equals the total

demand. We are also given the cost of transportation of 1 widget between any factory

and any retail center.

C1 C2 C3

F1 5 5 3

F2 6 4 1

Cost of transportation (in 0.01$/widget).

In the transportation problem, the goal is to determine the quantity to be transported

from each factory to each retail center so as to meet the demand at minimum total shipping

cost.

In order to formulate this problem as a linear program, we first choose the decision

variables. Let xij (i = 1, 2 and j = 1, 2, 3) be the number of widgets (in thousands)

transported from factory Fi to city Cj. Given these xij’s, we can express the total shipping

cost, i.e. the objective function to be minimized, by

5x11 + 5x12 + 3x13 + 6x21 + 4x22 + x23.

We now need to write down the constraints. First, we have the nonnegativity constraints

saying that xij ≥ 0 for i = 1, 2 and j = 1, 2, 3. Moreover, we have that the demand at

each retail center must be met. This gives rise to the following constraints:

x11 + x21 = 8,

x12 + x22 = 5,

x13 + x23 = 2.

Finally, each factory cannot ship more than its supply, resulting in the following con-

straints:

x11 + x12 + x13 ≤ 6,

x21 + x22 + x23 ≤ 9.

These inequalities can be replaced by equalities since the total supply is equal to the total

demand. A linear programming formulation of this transportation problem is therefore
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given by:

Minimize 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + x23

subject to:

x11 + x21 = 8

x12 + x22 = 5

x13 + x23 = 2

x11 + x12 + x13 = 6

x21 + x22 + x23 = 9

x11 ≥ 0, x21 ≥ 0, x31 ≥ 0,

x12 ≥ 0, x22 ≥ 0, x32 ≥ 0.

Among these 5 equality constraints, one is redundant, i.e. it is implied by the other

constraints or, equivalently, it can be removed without modifying the feasible space. For

example, by adding the first 3 equalities and substracting the fourth equality we obtain

the last equality. Similarly, by adding the last 2 equalities and substracting the first two

equalities we obtain the third one.

1.2 Representations of Linear Programs

A linear program can take many different forms. First, we have a minimization or a

maximization problem depending on whether the objective function is to be minimized

or maximized. The constraints can either be inequalities (≤ or ≥) or equalities. Some

variables might be unrestricted in sign (i.e. they can take positive or negative values; this

is denoted by ≷ 0) while others might be restricted to be nonnegative. A general linear

program in the decision variables x1, . . . , xn is therefore of the following form:

Maximize or Minimize z = c0 + c1x1 + . . . + cnxn

subject to:

ai1x1 + ai2x2 + . . . + ainxn

≤

≥

=

bi i = 1, . . . ,m

xj

{

≥ 0

≷ 0
j = 1, . . . , n.

The problem data in this linear program consists of cj (j = 0, . . . , n), bi (i = 1, . . . ,m)

and aij (i = 1, . . . ,m, j = 1, . . . , n). cj is referred to as the objective function coefficient
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of xj or, more simply, the cost coefficient of xj. bi is known as the right-hand-side (RHS)

of equation i. Notice that the constant term c0 can be omitted without affecting the set

of optimal solutions.

A linear program is said to be in standard form if

• it is a maximization program,

• there are only equalities (no inequalities) and

• all variables are restricted to be nonnegative.

In matrix form, a linear program in standard form can be written as:

Max z = cT x

subject to:

Ax = b

x ≥ 0.

where

c =









c1

...

cn









, b =









b1

...

bm









, x =









x1

...

xn









are column vectors, cT denote the transpose of the vector c, and A = [aij] is the m × n

matrix whose i, j−element is aij .

Any linear program can in fact be transformed into an equivalent linear program in

standard form. Indeed,

• If the objective function is to minimize z = c1x1 + . . . + cnxn then we can simply

maximize z′ = −z = −c1x1 − . . .− cnxn.

• If we have an inequality constraint ai1x1 + . . . + ainxn ≤ bi then we can transform

it into an equality constraint by adding a slack variable, say s, restricted to be

nonnegative: ai1x1 + . . . + ainxn + s = bi and s ≥ 0.

• Similarly, if we have an inequality constraint ai1x1 + . . . + ainxn ≥ bi then we can

transform it into an equality constraint by adding a surplus variable, say s, restricted

to be nonnegative: ai1x1 + . . . + ainxn − s = bi and s ≥ 0.

• If xj is unrestricted in sign then we can introduce two new decision variables x+

j and

x−
j restricted to be nonnegative and replace every occurrence of xj by x+

j − x−
j .
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For example, the linear program

Minimize z = 2x1 − x2

subject to:

x1 + x2 ≥ 2

3x1 + 2x2 ≤ 4

x1 + 2x2 = 3

x1 ≷ 0, x2 ≥ 0.

is equivalent to the linear program

Maximize z′ = −2x+
1

+ 2x−
1

+ x2

subject to:

x+
1
− x−

1
+ x2 − x3 = 2

3x+
1
− 3x−

1
+ 2x2 + x4 = 4

x+

1
− x−

1
+ 2x2 = 3

x+
1
≥ 0, x−

1
≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

with decision variables x+
1
, x−

1
, x2, x3, x4. Notice that we have introduced different slack

or surplus variables into different constraints.

In some cases, another form of linear program is used. A linear program is in canonical

form if it is of the form:

Max z = cT x

subject to:

Ax ≤ b

x ≥ 0.

A linear program in canonical form can be replaced by a linear program in standard form

by just replacing Ax ≤ b by Ax + Is = b, s ≥ 0 where s is a vector of slack variables

and I is the m×m identity matrix. Similarly, a linear program in standard form can be

replaced by a linear program in canonical form by replacing Ax = b by A′x ≤ b′ where

A′ =

[

A

−A

]

and b′ =

(

b

−b

)

.
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Problems

Problem 1.1. A company has to decide its production levels for the 4 coming months.

The demand for those months are 900, 1100, 1700 and 1300 units respectively. The

maximum production per month is 1200 units. Material produced one month can be

delivered either that same month or stored in inventory and delivered at some other

month. It costs the company $3 to carry one unit in inventory from one month to the

next. Through additional man-hours, up to 400 additional units can be produced per

month but, in this case, the company incurs a cost of $7/unit. Formulate as a linear

program the problem of determining the production levels so as to minimize the total

costs.

Problem 1.2. A contractor is working on a project, work on which is expected to last

for a period of T weeks. It is estimated that during the jth week, the contractor will

need uj man-hours of labor, j = 1 to T , for this project. The contractor can fulfill these

requirements either by hiring laborers over the entire T week horizon (called steady

labor) or by hiring laborers on a weekly basis each week (called casual labor) or by

employing a combination of both. One manhour of steady labor costs c1 dollars; the

cost is the same each week. However, the cost of casual labor may vary from week

to week, and it is expected to be c2j dollars/man-hour, during week j, j = 1, . . . , T .

Formulate the problem of fulfilling his labor requirements at minimum cost as a linear

program.

Problem 1.3. Transform the following linear program into an equivalent linear program

in standard form (Max{cT x : Ax = b, x ≥ 0}):

Min x1 − x2

subject to:

2x1 + x2 ≥ 3

3x1 − x2 ≤ 7

x1 ≥ 0, x2 ≷ 0.

Problem 1.4. Consider the following optimization problem:

Min
∑

i

ci|xi − di|

subject to:

Ax = b

x ≥ 0,
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where A, b, c and d are given. Assume that ci ≥ 0 for all i. As such this is not a linear

program since the objective function involves absolute values. Show how this problem

can be formulated equivalently as a linear program. Explain why the linear program is

equivalent to the original optimization problem. Would the transformation work if we

were maximizing.

Problem 1.5. Given a set (or arrangement) of n lines (see Figure 1.1) in the plane

(described as aix + biy = ci for i = 1, . . . , n), show how the problem of finding a point

x in the plane which minimizes the sum of the distances between x and each line can

be formulated as a linear program.

Hint: use Problem 1.1.4.

Figure 1.1: An arrangement of lines.

Problem 1.6. Given two linear functions over x, say cT x and dT x, show how to formulate

the problem of minimizing max(cT x, dT x) over Ax = b, x ≥ 0 as a linear program.

Would the transformation work if you were to maximize max(cT x, dT x)? How about

minimizing the maximum of several linear functions?

Problem 1.7. A function f : R→ R is said to be convex if f(αx+(1−α)y) ≥ αf(x)+(1−

α)f(y) for all x, y ∈ R and all 0 ≤ α ≤ 1. It is piecewise linear if R can be partitioned

into intervals over which the function is linear. See Figure 1.2 for an example. Show

how to formulate the problem of minimizing
∑

i fi(xi) where the fi’s are piecewise linear

as a linear program.

Problem 1.8. What is the optimum solution of the following linear program:

Min 5x1 + 7x2 + 9x3 + 11x4 + 13x5

subject to:
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Figure 1.2: A convex piecewise linear function.

15x1 + 14x2 + 45x3 + 44x4 + 13x5 = 1994

xi ≥ 0 i = 1, . . . , 8.
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2

The Simplex Method

In 1947, George B. Dantzig developed a technique to solve linear programs — this tech-

nique is referred to as the simplex method.

2.1 Brief Review of Some Linear Algebra

Two systems of equations Ax = b and Āx = b̄ are said to be equivalent if {x : Ax = b} =

{x : Āx = b̄}. Let Ei denote equation i of the system Ax = b, i.e. ai1x1 + . . . + ainxn = bi.

Given a system Ax = b, an elementary row operation consists in replacing Ei either by

αEi where α is a nonzero scalar or by Ei + βEk for some k 6= i. Clearly, if Āx = b̄ is

obtained from Ax = b by an elementary row operation then the two systems are equivalent.

(Exercise: prove this.) Notice also that an elementary row operation is reversible.

Let ars be a nonzero element of A. A pivot on ars consists of performing the following

sequence of elementary row operations:

• replacing Er by Ēr = 1

ars
Er,

• for i = 1, . . . ,m, i 6= r, replacing Ei by Ēi = Ei − aisĒr = Ei −
ais

ars
Er.

After pivoting on ars, all coefficients in column s are equal to 0 except the one in row r

which is now equal to 1. Since a pivot consists of elementary row operations, the resulting

system Āx = b̄ is equivalent to the original system.

Elementary row operations and pivots can also be defined in terms of matrices. Let P

be an m×m invertible (i.e. P−1 exists1) matrix. Then {x : Ax = b} = {x : PAx = Pb}.

1This is equivalent to saying that detP 6= 0 or also that the system Px = 0 has x = 0 as unique solution
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The two types of elementary row operations correspond to the matrices (the coefficients

not represented are equal to 0):

P =





























1
. . .

1

α

1
. . .

1





























← i and P =































1
. . .

1 β
. . .

1
. . .

1































← i

← k

.

Pivoting on ars corresponds to premultiplying Ax = b by

P =





























1 −a1s/ars

. . .

1 −ar−1,s/ars

1/ars

−ar+1,s/ars 1
. . .

−ams/ars 1





























← r.

2.2 The Simplex Method on an Example

For simplicity, we shall assume that we have a linear program of (what seems to be) a

rather special form (we shall see later on how to obtain such a form):

• the linear program is in standard form,

• b ≥ 0,

• there exists a collection B of m variables called a basis such that

– the submatrix AB of A consisting of the columns of A corresponding to the

variables in B is the m×m identity matrix and

– the cost coefficients corresponding to the variables in B are all equal to 0.

For example, the following linear program has this required form:
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2.2. The Simplex Method on an Example 12

Max z = 10 + 20 x1 + 16 x2 + 12 x3

subject to

x1 + x4 = 4

2 x1 + x2 + x3 +x5 = 10

2 x1 + 2x2 + x3 + x6 = 16

x1, x2, x3, x4, x5, x6 ≥ 0.

In this example, B = {x4, x5, x6}. The variables in B are called basic variables while

the other variables are called nonbasic. The set of nonbasic variables is denoted by N . In

the example, N = {x1, x2, x3}.

The advantage of having AB = I is that we can quickly infer the values of the basic

variables given the values of the nonbasic variables. For example, if we let x1 = 1, x2 =

2, x3 = 3, we obtain

x4 = 4− x1 = 3,

x5 = 10− 2x1 − x2 − x3 = 3,

x6 = 16− 2x1 − 2x2 − x3 = 7.

Also, we don’t need to know the values of the basic variables to evaluate the cost of

the solution. In this case, we have z = 10 + 20x1 + 16x2 + 12x3 = 98. Notice that

there is no guarantee that the so-constructed solution be feasible. For example, if we set

x1 = 5, x2 = 2, x3 = 1, we have that x4 = 4− x1 = −1 does not satisfy the nonnegativity

constraint x4 ≥ 0.

There is an assignment of values to the nonbasic variables that needs special consid-

eration. By just letting all nonbasic variables to be equal to 0, we see that the values

of the basic variables are just given by the right-hand-sides of the constraints and the

cost of the resulting solution is just the constant term in the objective function. In our

example, letting x1 = x2 = x3 = 0, we obtain x4 = 4, x5 = 10, x6 = 16 and z = 10. Such

a solution is called a basic feasible solution or bfs. The feasibility of this solution comes

from the fact that b ≥ 0. Later, we shall see that, when solving a linear program, we

can restrict our attention to basic feasible solutions. The simplex method is an iterative

method that generates a sequence of basic feasible solutions (corresponding to different

bases) and eventually stops when it has found an optimal basic feasible solution.

Instead of always writing explicitely these linear programs, we adopt what is known

as the tableau format. First, in order to have the objective function play a similar role

as the other constraints, we consider z to be a variable and the objective function as a

constraint. Putting all variables on the same side of the equality sign, we obtain:

−z + 20x1 + 16x2 + 12x3 = −10.
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2.2. The Simplex Method on an Example 13

We also get rid of the variable names in the constraints to obtain the tableau format:

−z x1 x2 x3 x4 x5 x6

1 20 16 12 -10

1 0 0 1 4

2 1 1 1 10

2 2 1 1 16

Our bfs is currently x1 = 0, x2 = 0, x3 = 0, x4 = 4, x5 = 10, x6 = 16 and z = 10. Since

the cost coefficient c1 of x1 is positive (namely, it is equal to 20), we notice that we can

increase z by increasing x1 and keeping x2 and x3 at the value 0. But in order to maintain

feasibility, we must have that x4 = 4 − x1 ≥ 0, x5 = 10 − 2x1 ≥ 0, x6 = 16 − 2x1 ≥ 0.

This implies that x1 ≤ 4. Letting x1 = 4, x2 = 0, x3 = 0, we obtain x4 = 0, x5 = 2, x6 = 8

and z = 90. This solution is also a bfs and corresponds to the basis B = {x1, x5, x6}.

We say that x1 has entered the basis and, as a result, x4 has left the basis. We would

like to emphasize that there is a unique basic solution associated with any basis. This

(not necessarily feasible) solution is obtained by setting the nonbasic variables to zero and

deducing the values of the basic variables from the m constraints.

Now we would like that our tableau reflects this change by showing the dependence of

the new basic variables as a function of the nonbasic variables. This can be accomplished

by pivoting on the element a11. Why a11? Well, we need to pivot on an element of column

1 because x1 is entering the basis. Moreover, the choice of the row to pivot on is dictated

by the variable which leaves the basis. In this case, x4 is leaving the basis and the only 1

in column 4 is in row 1. After pivoting on a11, we obtain the following tableau:

−z x1 x2 x3 x4 x5 x6

1 16 12 -20 -90

1 0 0 1 4

1 1 -2 1 2

2 1 -2 1 8

Notice that while pivoting we also modified the objective function row as if it was

just like another constraint. We have now a linear program which is equivalent to the

original one from which we can easily extract a (basic) feasible solution of value 90. Still

z can be improved by increasing xs for s = 2 or 3 since these variables have a positive

cost coefficient2 c̄s. Let us choose the one with the greatest c̄s; in our case x2 will enter

the basis. The maximum value that x2 can take while x3 and x4 remain at the value 0

is dictated by the constraints x1 = 4 ≥ 0, x5 = 2 − x2 ≥ 0 and x6 = 8 − 2x2 ≥ 0. The

2By simplicity, we always denote the data corresponding to the current tableau by c̄, Ā, and b̄.
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2.2. The Simplex Method on an Example 14

tightest of these inequalities being x5 = 2 − x2 ≥ 0, we have that x5 will leave the basis.

Therefore, pivoting on ā22, we obtain the tableau:

−z x1 x2 x3 x4 x5 x6

1 -4 12 -16 -122

1 0 1 0 4

1 1 -2 1 2

-1 2 -2 1 4

The current basis is B = {x1, x2, x6} and its value is 122. Since 12 > 0, we can

improve the current basic feasible solution by having x4 enter the basis. Instead of writing

explicitely the constraints on x4 to compute the level at which x4 can enter the basis, we

perform the min ratio test. If xs is the variable that is entering the basis, we compute

min
i:āis>0

{b̄i/āis}.

The argument of the minimum gives the variable that is exiting the basis. In our exam-

ple, we obtain 2 = min{4/1, 4/2} and therefore variable x6 which is the basic variable

corresponding to row 3 leaves the basis. Moreover, in order to get the updated tableau,

we need to pivot on ā34. Doing so, we obtain:

−z x1 x2 x3 x4 x5 x6

1 2 -4 -6 -146

1 1/2 1 -1/2 2

1 0 -1 1 6

-1/2 1 -1 1/2 2

Our current basic feasible solution is x1 = 2, x2 = 6, x3 = 0, x4 = 2, x5 = 0, x6 = 0

with value z = 146. By the way, why is this solution feasible? In other words, how do we

know that the right-hand-sides (RHS) of the constraints are guaranteed to be nonnegative?

Well, this follows from the min ratio test and the pivot operation. Indeed, when pivoting

on ārs, we know that

• ārs > 0,

• b̄r

ārs
≤ b̄i

āis
if āis > 0.

After pivoting the new RHS satisfy

• b̄r = b̄r

ārs
≥ 0,

• b̄i = b̄i −
āis

ārs
≥ b̄i ≥ 0 if āis ≤ 0 and
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2.2. The Simplex Method on an Example 15

• b̄i = b̄i −
āis

ārs
= āis

(

b̄i

āis
− b̄r

ārs

)

≥ 0 if āis > 0.

We can also justify why the solution keeps improving. Indeed, when we pivot on

ārs > 0, the constant term c̄0 in the objective function becomes c̄0 + b̄r ∗ c̄s/ārs. If b̄r > 0,

we have a strict improvement in the objective function value since by our choice of entering

variable c̄s > 0. We shall deal with the case b̄r = 0 later on.

The bfs corresponding to B = {1, 2, 4} is not optimal since there is still a positive cost

coefficient. We see that x3 can enter the basis and, since there is just one positive element

in row 3, we have that x1 leaves the basis. We thus pivot on ā13 and obtain:

−z x1 x2 x3 x4 x5 x6

1 -4 -8 -4 -154

2 1 2 -1 4

0 1 -1 1 6

1 1 0 0 4

The current basis is {x3, x2, x4} and the associated bfs is x1 = 0, x2 = 6, x3 = 4, x4 =

4, x5 = 0, x6 = 0 with value z = 154. This bfs is optimal since the objective function reads

z = 154−4x1−8x5−4x6 and therefore cannot be more than 154 due to the nonnegativity

constraints.

Through a sequence of pivots, the simplex method thus goes from one linear program

to another equivalent linear program which is trivial to solve. Remember the crucial

observation that a pivot operation does not alter the feasible region.

In the above example, we have not encountered several situations that may typically

occur. First, in the min ratio test, several terms might produce the minimum. In that

case, we can arbitrarily select one of them. For example, suppose the current tableau is:

−z x1 x2 x3 x4 x5 x6

1 16 12 -20 -90

1 0 0 1 4

1 1 -2 1 2

2 1 -2 1 4

and that x2 is entering the basis. The min ratio test gives 2 = min{2/1, 4/2} and, thus,

either x5 or x6 can leave the basis. If we decide to have x5 leave the basis, we pivot on

ā22; otherwise, we pivot on ā32. Notice that, in any case, the pivot operation creates a

zero coefficient among the RHS. For example, pivoting on ā22, we obtain:
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−z x1 x2 x3 x4 x5 x6

1 -4 12 -16 -122

1 0 1 0 4

1 1 -2 1 2

-1 2 -2 1 0

A bfs with b̄i = 0 for some i is called degenerate. A linear program is nondegenerate if

no bfs is degenerate. Pivoting now on ā34 we obtain:

−z x1 x2 x3 x4 x5 x6

1 2 -4 -6 -122

1 1/2 1 -1/2 4

1 0 -1 1 2

-1/2 1 -1 1/2 0

This pivot is degenerate. A pivot on ārs is called degenerate if b̄r = 0. Notice that a

degenerate pivot alters neither the b̄i’s nor c̄0. In the example, the bfs is (4, 2, 0, 0, 0, 0)

in both tableaus. We thus observe that several bases can correspond to the same basic

feasible solution.

Another situation that may occur is when xs is entering the basis, but āis ≤ 0 for

i = 1, . . . ,m. In this case, there is no term in the min ratio test. This means that, while

keeping the other nonbasic variables at their zero level, xs can take an arbitrarily large

value without violating feasibility. Since c̄s > 0, this implies that z can be made arbitrarily

large. In this case, the linear program is said to be unbounded or unbounded from above

if we want to emphasize the fact that we are dealing with a maximization problem. For

example, consider the following tableau:

−z x1 x2 x3 x4 x5 x6

1 16 12 20 -90

1 0 0 -1 4

1 1 0 1 2

2 1 -2 1 8

If x4 enters the basis, we have that x1 = 4 + x4, x5 = 2 and x6 = 8 + 2x4 and, as a

result, for any nonnegative value of x4, the solution (4 + x4, 0, 0, x4, 2, 8 + 2x4) is feasible

and its objective function value is 90 + 20x4. There is thus no finite optimum.
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2.3 Detailed Description of Phase II

In this section, we summarize the different steps of the simplex method we have described

in the previous section. In fact, what we have described so far constitutes Phase II of

the simplex method. Phase I deals with the problem of putting the linear program in the

required form. This will be described in a later section.

Phase II of the simplex method

1. Suppose the initial or current tableau is

−z x1 . . . xs . . . xn

1 c̄1 . . . c̄s . . . c̄n −c̄0

ā11 . . . ā1s . . . ā1n b̄1 ≥ 0
...

...
...

...

ār1 . . . ārs . . . ārn b̄r ≥ 0
...

...
...

...

ām1 . . . āms . . . āmn b̄m ≥ 0

and the variables can be partitioned into B = {xj1 , . . . , xjm
} and N with

• c̄ji
= 0 for i = 1, . . . ,m and

•

ākji
=

{

0 k 6= i

1 k = i.

The current basic feasible solution is given by xji
= b̄i for i = 1, . . . ,m

and xj = 0 otherwise. The objective function value of this solution is c̄0.

2. If c̄j ≤ 0 for all j = 1, . . . , n then the current basic feasible solution is

optimal. STOP.

3. Find a column s for which c̄s > 0. xs is the variable entering the basis.

4. Check for unboundedness. If āis ≤ 0 for i = 1, . . . ,m then the linear

program is unbounded. STOP.

5. Min ratio test. Find row r such that

b̄r

ārs

= min
i:āis>0

b̄i

āis

.
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6. Pivot on ārs. I.e. replace the current tableau by:

−z . . . xs . . . xj . . .

1 . . . 0 . . . c̄j −
ārj c̄s

ārs

. . . −c̄0 −
b̄r c̄s

ārs
...

...
...

row r . . . 1 . . .
ārj

ārs

. . .
b̄r

ārs
...

...
...

row i . . . 0 . . . āij −
ārj āis

ārs

. . . b̄i −
b̄rāis

ārs
...

...
...

Replace xjr
by xs in B.

7. Go to step 2.

2.4 Convergence of the Simplex Method

As we have seen, the simplex method is an iterative method that generates a sequence

of basic feasible solutions. But, do we have any guarantee that this process eventually

terminates? The answer is yes if the linear program is nondegenerate.

Theorem 2.1 The simplex method solves a nondegenerate linear program in finitely many

iterations.

Proof:

For nondegenerate linear programs, we have a strict improvement (namely of value
b̄r c̄s

ārs

>

0) in the objective function value at each iteration. This means that, in the sequence of

bfs produced by the simplex method, each bfs can appear at most once. Therefore, for

nondegenerate linear programs, the number of iterations is certainly upper bounded by

the number of bfs. This latter number is finite (for example, it is upper bounded by
(

n
m

)

)

since any bfs corresponds to m variables being basic3. QED.

However, when the linear program is degenerate, we might have degenerate pivots

which give no strict improvement in the objective function. As a result, a subsequence

of bases might repeat implying the nontermination of the method. This phenomenon is

called cycling.

3Not all choices of basic variables give rise to feasible solutions.
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2.4.1 An Example of Cycling

The following is an example that will cycle if unfortunate choices of entering and leaving

variables are made (the pivot element is within a box).

−z x1 x2 x3 x4 x5 x6

1 4 1.92 -16 -0.96 0

-12.5 -2 12.5 1 1 0

1 0.24 -2 -0.24 1 0

−z x1 x2 x3 x4 x5 x6

1 0.96 -8 0 -4 0

1 -12.5 -2 1 12.5 0

1 0.24 -2 -0.24 1 0

−z x1 x2 x3 x4 x5 x6

1 4 1.92 -0.96 -16 0

1 -12.5 -2 1 12.5 0

1 1 0.24 -0.24 -2 0

−z x1 x2 x3 x4 x5 x6

1 -4 0.96 0 -8 0

12.5 1 1 -2 -12.5 0

1 1 0.24 -0.24 -2 0

−z x1 x2 x3 x4 x5 x6

1 -16 -0.96 1.92 4 0

12.5 1 1 -2 -12.5 0

-2 -0.24 1 0.24 1 0

−z x1 x2 x3 x4 x5 x6

1 -8 0 -4 0.96 0

-12.5 -2 12.5 1 1 0

-2 -0.24 1 0.24 1 0
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−z x1 x2 x3 x4 x5 x6

1 4 1.92 -16 -0.96 0

-12.5 -2 12.5 1 1 0

1 0.24 -2 -0.24 1 0

2.4.2 Bland’s Anticycling Rule

The simplex method, as described in the previous section, is ambiguous. First, if we

have several variables with a positive c̄s (cfr. Step 3) we have not specified which will

enter the basis. Moreover, there might be several variables attaining the minimum in the

minimum ratio test (Step 5). If so, we need to specify which of these variables will leave

the basis. A pivoting rule consists of an entering variable rule and a leaving variable rule

that unambiguously decide what will be the entering and leaving variables.

The most classical entering variable rule is:

Largest coefficient entering variable rule: Select the variable xs with the largest

c̄s > 0. In case of ties, select the one with the smallest subscript s.

The corresponding leaving variable rule is:

Largest coefficient leaving variable rule: Among all rows attaining the minimum in

the minimum ratio test, select the one with the largest pivot ārs. In case of ties,

select the one with the smallest subscript r.

The example of subsection 2.4.1 shows that the use of the largest coefficient entering

and leaving variable rules does not prevent cycling. There are two rules that avoid cycling:

the lexicographic rule and Bland’s rule (after R. Bland who discovered it in 1976). We’ll

just describe the latter one, which is conceptually the simplest.

Bland’s anticycling pivoting rule: Among all variables xs with positive c̄s, select the

one with the smallest subscript s. Among the eligible (according to the minimum

ratio test) leaving variables xl, select the one with the smallest subscript l.

Theorem 2.2 The simplex method with Bland’s anticycling pivoting rule terminates after

a finite number of iterations.

Proof:

The proof is by contradiction. If the method does not stop after a finite number of

iterations then there is a cycle of tableaus that repeats. If we delete from the tableau

that initiates this cycle the rows and columns not containing pivots during the cycle, the
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resulting tableau has a cycle with the same pivots. For this tableau, all right-hand-sides

are zero throughout the cycle since all pivots are degenerate.

Let t be the largest subscript of the variables remaining. Consider the tableau T1 in

the cycle with xt leaving. Let B = {xj1 , . . . , xjm
} be the corresponding basis (say jr = t),

xs be the associated entering variable and, a1
ij and c1

j the constraint and cost coefficients.

On the other hand, consider the tableau T2 with xt entering and denotes by a2
ij and c2

j

the corresponding constraint and cost coefficients.

Let x be the (infeasible) solution obtained by letting the nonbasic variables in T1 be

zero except for xs = −1. Since all RHS are zero, we deduce that xji
= ais for i = 1, . . . ,m.

Since T2 is obtained from T1 by elementary row operations, x must have the same objective

function value in T1 and T2. This means that

c1
0 − c1

s = c2
0 − c2

s +
m
∑

i=1

a1
isc

2
ji
.

Since we have no improvement in objective function in the cycle, we have c1
0 = c2

0. More-

over, c1
s > 0 and, by Bland’s rule, c2

s ≤ 0 since otherwise xt would not be the entering

variable in T2. Hence,

m
∑

i=1

a1
isc

2
ji

< 0

implying that there exists k with a1
ksc

2
jk

< 0. Notice that k 6= r, i.e. jk < t, since the

pivot element in T1, a1
rs, must be positive and c2

t > 0. However, in T2, all cost coefficients

c2
j except c2

t are nonnegative; otherwise xj would have been selected as entering variable.

Thus c2
jk

< 0 and a1
ks > 0. This is a contradiction because Bland’s rule should have

selected xjk
rather than xt in T1 as leaving variable. QED.

2.5 Phase I of the Simplex Method

In this section, we show how to transform a linear program into the form presented in

Section 2.2. For that purpose, we show how to find a basis of the linear program which

leads to a basic feasible solution. Sometimes, of course, we may inherit a bfs as part of the

problem formulation. For example, we might have constraints of the form Ax ≤ b with

b ≥ 0 in which case the slack variables constitute a bfs. Otherwise, we use the two-phase

simplex method to be described in this section.

Consider a linear program in canonical form with b ≥ 0 (this latter restriction is

without loss of generality since we may multiply some constraints by -1). In phase I,

Lecture notes Michel X. Goemans



2.5. Phase I of the Simplex Method 22

instead of solving

Max z = c0 + cT x

subject to:

(P ) Ax = b

x ≥ 0

we add some artificial variables {xa
i : i = 1, . . . ,m} and consider the linear program:

Min w =

m
∑

i=1

xa
i

subject to:

Ax + Ixa = b

x ≥ 0, xa ≥ 0.

This program is not in the form required by the simplex method but can easily be trans-

formed to it. Changing the minw by maxw′ = −w and expressing the objective function

in terms of the initial variables, we obtain:

Max w′ = −eT b + (eT A)x

subject to:

(Q) Ax + Ixa = b

x ≥ 0, xa ≥ 0

where e is a vector of 1’s. We have artificially created a bfs, namely x = 0 and xa = b. We

now use the simplex method as described in the previous section. There are three possible

outcomes.

1. w′ is reduced to zero and no artificial variables remain in the basis, i.e. we are left

with a basis consisting only of original variables. In this case, we simply delete

the columns corresponding to the artificial variables, replace the objective function

by the objective function of (P ) after having expressed it in terms of the nonbasic

variables and use Phase II of the simplex method as described in Section 2.3.

2. w′ < 0 at optimality. This means that the original LP (P ) is infeasible. Indeed, if x

is feasible in (P ) then (x, xa = 0) is feasible in (Q) with value w′ = 0.

3. w′ is reduced to zero but some artificial variables remain in the basis. These artificial

variables must be at zero level since, for this solution, −w′ =
∑m

i=1
xa

i = 0. Suppose
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that the ith variable ofthe basis is artificial. We may pivot on any nonzero (not

necessarily positive) element āij of row i corresponding to a non-artificial variable

xj . Since b̄i = 0, no change in the solution or in w′ will result. We say that we

are driving the artificial variables out of the basis. By repeating this for all artificial

variables in the basis, we obtain a basis consisting only of original variables. We

have thus reduced this case to case 1.

There is still one detail that needs consideration. We might be unsuccessful in

driving one artificial variable out the basis if āij = 0 for j = 1, . . . , n. However,

this means that we have arrived at a zero row in the original matrix by performing

elementary row operations, implying that the constraint is redundant. We can delete

this constraint and continue in phase II with a basis of lower dimension.

Example

Consider the following example already expressed in tableau form.

−z x1 x2 x3 x4

1 20 16 12 5 0

1 0 1 2 4

0 1 2 3 2

0 1 0 2 2

We observe that we don’t need to add three artificial variables since we can use x1 as

first basic variable. In phase I, we solve the linear program:

w x1 x2 x3 x4 xa
1 xa

2

1 2 2 5 4

1 0 1 2 4

1 2 3 1 2

1 0 2 1 2

The objective function is to minimize xa
1 + xa

2 and, as a result, the objective function

coefficients of the nonbasic variables as well as −c̄0 are obtained by taking the negative of

the sum of all rows corresponding to artificial variables. Pivoting on ā22, we obtain:
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w x1 x2 x3 x4 xa
1 xa

2

1 -2 -1 -2 0

1 1 2 0 4

1 2 3 1 2

-2 -1 -1 1 0

This tableau is optimal and, since w = 0, the original linear program is feasible. To

obtain a bfs, we need to drive xa
1 out of the basis. This can be done by pivoting on say

ā34. Doing so, we get:

w x1 x2 x3 x4 xa
1 xa

2

1 0 -1 -1 0

1 -3 -2 2 4

1 -4 -2 3 2

2 1 1 -1 0

Expressing z as a function of {x1, x2, x4}, we have transformed our original LP into:

−z x1 x2 x3 x4

1 126 -112

1 -3 4

1 -4 2

2 1 0

This can be solved by phase II of the simplex method.

Problems

Problem 2.1. Solve by the simplex method:

Max z = 10 + 2x2 + 3x5

subject to:

x1 − x2 + x5 = 4

3x2 + x3 − x5 = 12

x2 + x4 + 2x5 = 14

2x2 + x5 + x6 = 13

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0.

Show all intermediate tableaux.
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Problem 2.2. Solve by the simplex method using only one pivot:

Max z = x1 + 4x2 + 5x3

subject to:

x1 + 2x2 + 3x3 ≤ 2

3x1 + x2 + 2x3 ≤ 2

2x1 + 3x2 + x3 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Problem 2.3. Solve by the two-phase simplex method:

Max z = 3x1 + x2

subject to:

x1 − x2 ≤ −1

−x1 − x2 ≤ −3

2x1 + x2 ≤ 4

x1 ≥ 0, x2 ≥ 0.

Problem 2.4. Solve by the simplex method:

Max z = x11 + 2x12 + 3x21 + 4x22 + 5x31 + 7x32

subject to:

x11 + x12 ≤ 1

x21 + x22 ≤ 1

x31 + x32 ≤ 1

x11 + x21 + x31 ≤ 1

x12 + x22 + x32 ≤ 1

xij ≥ 0 i ∈ {1, 2, 3}, j ∈ {1, 2}.

Were you expecting the optimum solution to have all components either 0 or 1?

Problem 2.5. Find a feasible solution to the following system:
x1 + x2 + x3 + x4 + x5 = 2

−x1 + 2x2 + x3 − 3x4 + x5 = 1

x1 − 3x2 − 2x3 + 2x4 − 2x5 = −4

x1, x2, x3, x4, x5 ≥ 0
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Problem 2.6. Use the simplex method to show that the following constraints imply x1 +

2x2 ≤ 8:
4x1 + x2 ≤ 4

2x1 − 3x2 ≤ 6

x1, x2 ≥ 0

Problem 2.7. How are the various rules of the simplex method affected when solving a

minimization problem instead of a maximization problem as described in these notes?
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Linear Programming in Matrix

Form

In this chapter, we show that the entries of the current tableau are uniquely determined

by the collection of decision variables that form the basis and we give matrix expressions

for these entries.

Consider a feasible linear program in standard form:

Max z = cT x

subject to:

Ax = b

x ≥ 0,

where A has full row rank. Consider now any intermediate tableau of phase II of the

simplex method and let B denote the corresponding collection of basic variables. If D

(resp. d) is an m× n matrix (resp. an n-vector), let DB (resp. dB) denote the restriction

of D (resp. d) to the columns (resp. rows) corresponding to B. We define analogously DN

and dN for the collection N of nonbasic variables. For example, Ax = b can be rewritten

as ABxB +ANxN = b. After possible regrouping of the basic variables, the current tableau

looks as follows:
xB xN

−z 0 c̄T
N −c̄0

ĀB = I ĀN b̄.

Since the current tableau has been obtained from the original tableau by a sequence

of elementary row operations, we conclude that there exists an invertible matrix P (see

27
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Section 2.1) such that:

PAB = ĀB = I

PAN = ĀN

and

Pb = b̄.

This implies that P = A−1

B and therefore:

ĀN = A−1

B AN

and

b̄ = A−1

B b.

Moreover, since the objective functions of the original and current tableaus are equivalent

(i.e. cT
BxB + cT

NxN = c̄0 + c̄T
BxB + c̄T

NxN = c̄0 + c̄T
NxN ) and xB = b̄ − ĀNxN , we derive

that:

c̄T
N = cT

N − cT
BĀN = cT

N − cT
BA−1

B AN

and

c̄0 = cT
B b̄ = cT

BA−1

B b.

This can also be written as:

c̄T = cT − cT
BA−1

B A.

As we’ll see in the next chapter, it is convenient to define an m-vector y by yT = cT
BA−1

B .

In summary, the current tableau can be expressed in terms of the original data as:

xB xN

−z 0 cT
N − yT AN −yT b

I A−1

B AN A−1

B b.

The simplex method could be described using this matrix form. For example, this

optimality criterion becomes cT
N − yT AN ≤ 0 or, equivalently, cT − yT A ≤ 0, i.e. AT y ≥ c

where yT = cT
BA−1

B .
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Problems

Problem 3.1. Consider an LP for which we can directly apply phase II of the simplex

method (i.e. the initial tableau has an identity matrix somewhere). Consider now any

intermediate tableau obtained by applying the simplex method and let B be its associ-

ated basis.

1. Show how to find A−1

B from this intermediate tableau without doing any com-

putation. Prove your claim and check its correctness on the final tableau in the

solutions of Problem 2.2.1.

2. Show also how to find yT = cT
BA−1

B . Again check your claim on the same final

tableau.

Problem 3.2. Consider the following two tableaus:

Tableau 1
x1 x2 x3 x4 x5 x6 x7

−z 2 f 3 4 0

1 a 1 1 1 5

0 1 1 1 1 2

1 1 0 1 1 4
Tableau 2

x1 x2 x3 x4 x5 x6 x7

−z e -1 -2 -1 -13

b 1 1 0 -1 1

1 c 1 -1 0 3

d 1 -1 1 g 1
where a, b, c, d, e, f, g are unknowns.

1. What is the basis B of tableau 2? What is AB? What is A−1

B ? What is the value

of g?

2. What is the relation between a, e and f (expressed as a single equation)?

3. If f = 3, for what values of a will tableau 2 be optimal?

4. If a = 7, what are the values of b, c and d?

Problem 3.3. Consider the following initial tableau:

x1 x2 x3 x4 x5 x6 x7

−z a 2 10 1 0

2 1 1 3 1 10

2 1 2 2 1 15

1 -1 1 -4 1 1
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Suppose the current tableau is:

x1 x2 x3 x4 x5 x6 x7

−z b -3 -2 -3 d

c 1 2 -1 1 6

-10 1 -10 7 -4 1

3 1 3 -2 1 1
Notice that there are 4 unknowns a, b, c and d.

1. For what values of b is the current bfs optimal?

2. What is the current basis B? What is AB? What is A−1

B ?

3. What is the relation between a and b?

4. What are the values of c and d?

5. Suppose the initial value of b2 (namely 15) were to change to b2 + ǫ where ǫ ≥ 0.

What would be the change in the optimal objective function value for ǫ sufficiently

small?

6. In 5., for what values of ǫ ≥ 0 will the current basis remain optimal?
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Duality

Duality is the most important and useful structural property of linear programs. We start

by illustrating the notion on an example.

Consider the linear program:

Max z = 5x1 + 4x2

subject to:

x1 ≤ 4 (4.1)

x1 + 2x2 ≤ 10 (4.2)

3x1 + 2x2 ≤ 16 (4.3)

x1, x2 ≥ 0.

We shall refer to this linear program as the primal. By exhibiting any feasible esolution, say

x1 = 4 and x2 = 2, one derives a lower bound (since we are maximizing) on the optimum

value z∗ of the linear program; in this case, we have z∗ ≥ 28. How could we derive upper

bounds on z∗? Multiplying inequality (4.3) by 2, we derive that 6x1 + 4x2 ≤ 32 for any

feasible (x1, x2). Since x1 ≥ 0, this in turn implies that z = 5x1 + 4x2 ≤ 6x1 + 4x2 ≤ 32

for any feasible solution and, thus, z∗ ≤ 32. One can even combine several inequalities to

get upper bounds. Adding up all three inequalities, we get 5x1 + 4x2 ≤ 30, implying that

z∗ ≤ 30. In general, one would multiply inequality (4.1) by some nonnegative scalar y1,

inequality (4.2) by some nonnegative y2 and inequality (4.3) by some nonnegative y3, and

add them together, deriving that

(y1 + y2 + 3y3)x1 + (2y2 + 2y3)x2 ≤ 4y1 + 10y2 + 16y3.

To derive an upper bound on z∗, one would then impose that the coefficients of the xi’s

in this implied inequality dominate the corresponding cost coefficients: y1 + y2 + 3y3 ≥ 5
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and 2y2 + 2y3 ≥ 4. To derive the best upper bound (i.e. smallest) this way, one is thus led

to solve the following so-called dual linear program:

Min w = 4y1 + 10y2 + 16y3

subject to:

y1 + y2 + 3y3 ≥ 5

2y2 + 2y3 ≥ 4

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

Observe how the dual linear program is constructed from the primal: one is a maximization

problem, the other a minimization; the cost coefficients of one are the RHS of the other

and vice versa; the constraint matrix is just transposed (see below for more precise and

formal rules). The optimum solution to this linear program is y1 = 0, y2 = 0.5 and

y3 = 1.5, giving an upper bound of 29 on z∗. What we shall show in this chapter is that

this upper bound is in fact equal to the optimum value of the primal. Here, x1 = 3 and

x2 = 3.5 is a feasible solution to the primal of value 29 as well. Because of our upper

bound of 29, this solution must be optimal, and thus duality is a way to prove optimality.

4.1 Duality for Linear Programs in canonical form

Given a linear program (P ) in canonical form

Max z = cT x

subject to:

(P ) Ax ≤ b

x ≥ 0

we define its dual linear program (D) as

Min w = bT y

subject to:

(D) AT y ≥ c

y ≥ 0.

(P ) is called the primal linear program. Notice there is a dual variable associated with

each primal constraint, and a dual constraint associated with each primal variable. In

fact, the primal and dual are indistinguishable in the following sense:
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Proposition 4.1 The dual of the dual is the primal.

Proof:

To construct the dual of the dual, we first need to put (D) in canonical form:

Max w′ = −w = −bT y

subject to:

(D′) −ATy ≤ −c

y ≥ 0.

Therefore the dual (DD′) of D is:

Min z′ = −cT x

subject to:

(DD′) −Ax ≥ −b

x ≥ 0.

Transforming this linear program into canonical form, we obtain (P ). QED.

Theorem 4.2 (Weak Duality) If x is feasible in (P ) with value z and y is feasible in

(D) with value w then z ≤ w.

Proof:

z = cT x
x≥0

≤ (AT y)T x = yT Ax
y≥0

≤ yT b = bT y = w.

QED.

Any dual feasible solution (i.e. feasible in (D)) gives an upper bound on the optimal

value z∗ of the primal (P ) and vice versa (i.e. any primal feasible solution gives a lower

bound on the optimal value w∗ of the dual (D)). In order to take care of infeasible linear

programs, we adopt the convention that the maximum value of any function over an empty

set is defined to be −∞ while the minimum value of any function over an empty set is

+∞. Therefore, we have the following corollary:

Corollary 4.3 (Weak Duality) z∗ ≤ w∗.

What is more surprising is the fact that this inequality is in most cases an equality.

Theorem 4.4 (Strong Duality) If z∗ is finite then so is w∗ and z∗ = w∗.
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Proof:

The proof uses the simplex method. In order to solve (P ) with the simplex method, we

reformulate it in standard form:

Max z = cT x

subject to:

(P ) Ax + Is = b

x ≥ 0, s ≥ 0.

Let Ã = (A I), x̃ =

(

x

s

)

and c̃ =

(

c

0

)

. Let B be the optimal basis obtained by

the simplex method. The optimality conditions imply that

ÃT y ≥ c̃

where

yT = (c̃B)T Ã−1

B .

Replacing Ã by (A I) and c̃ by

(

c

0

)

, we obtain:

AT y ≥ c

and

y ≥ 0.

This implies that y is a dual feasible solution. Moreover, the value of y is precisely

w = yT b = (c̃B)T Ã−1

B b = (c̃B)T x̃B = z∗. Therefore, by weak duality, we have z∗ = w∗.

QED.

Since the dual of the dual is the primal, we have that if either the primal or the dual

is feasible and bounded then so are both of them and their values are equal. From weak

duality, we know that if (P ) is unbounded (i.e. z∗ = +∞) then (D) is infeasible (w∗ =

+∞). Similarly, if (D) is unbounded (i.e. w∗ = −∞) then (P ) is infeasible (z∗ = −∞).

However, the converse to these statements are not true: There exist dual pairs of linear

programs for which both the primal and the dual are infeasible. Here is a summary of the

possible alternatives:
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Primal

Dual
z∗ finite unbounded (z∗ =∞) infeasible (z∗ = −∞)

w∗ finite z∗ = w∗ impossible impossible

unbounded (w∗ = −∞) impossible impossible possible

infeasible (w∗ = +∞) impossible possible possible

4.2 The dual of a linear program in general form

In order to find the dual of any linear program (P ), we can first transform it into a linear

program in canonical form (see Section 1.2), then write its dual and possibly simplify it

by transforming it into some equivalent form.

For example, considering the linear program

Max z = cT x

subject to:
∑

j

aijxj ≤ bi i ∈ I1

(P )
∑

j

aijxj ≥ bi i ∈ I2

∑

j

aijxj = bi i ∈ I3

xj ≥ 0 j = 1, . . . , n,

we can first transform it into

Max z = cT x

subject to:
∑

j

aijxj ≤ bi i ∈ I1

(P ′) −
∑

j

aijxj ≤ −bi i ∈ I2

∑

j

aijxj ≤ bi i ∈ I3

−
∑

j

aijxj ≤ −bi i ∈ I3

xj ≥ 0 j = 1, . . . , n.

Assigning the vectors y1, y2, y3 and y4 of dual variables to the first, second, third and
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fourth set of constraints respectively, we obtain the dual:

Min w =
∑

i∈I1

biy
1
i −

∑

i∈I2

biy
2
i +

∑

i∈I3

biy
3
i −

∑

i∈I3

biy
4
i

subject to:

(D′)
∑

i∈I1

aijy
1
i −

∑

i∈I2

aijy
2
i +

∑

i∈I3

aijy
3
i −

∑

i∈I3

aijy
4
i ≥ cj j = 1, . . . , n

y1, y2, y3, y4 ≥ 0.

This dual can be written in a simplified form by letting










yi = y1
i i ∈ I1

yi = −y2
i i ∈ I2

yi = y3
i − y4

i i ∈ I3.

In terms of yi, we obtain (verify it!) the following equivalent dual linear program

Min w =
∑

i∈I

biyi

subject to:

(D)
∑

i∈I

aijyi ≥ cj j = 1, . . . , n

yi ≥ 0 i ∈ I1

yi ≤ 0 i ∈ I2

yi ≷ 0 i ∈ I3,

where I = I1 ∪ I2 ∪ I3.

We could have avoided all these steps by just noticing that, if the primal program

is a maximization program, then inequalities with a ≤ sign in the primal correspond

to nonnegative dual variables, inequalities with a ≥ sign correspond to nonpositive dual

variables, and equalities correspond to unrestricted in sign dual variables.

By performing similar transformations for the restrictions on the primal variables, we

obtain the following set of rules for constructing the dual linear program of any linear
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program:

Primal ←→ Dual

Max ←→ Min
∑

j aijxj ≤ bi ←→ yi ≥ 0
∑

j aijxj ≥ bi ←→ yi ≤ 0
∑

j aijxj = bi ←→ yi ≷ 0

xj ≥ 0 ←→
∑

i aijyi ≥ cj

xj ≤ 0 ←→
∑

i aijyi ≤ cj

xj ≷ 0 ←→
∑

i aijyi = cj .

If the primal linear program is in fact a minimization program then we simply use the

above rules from right to left. This follows from the fact that the dual of the dual is the

primal.

4.3 Complementary slackness

Consider a pair of dual linear programs

Max z = cT x

subject to:

(P ) Ax ≤ b

x ≥ 0

and

Min w = bT y

subject to:

(D) AT y ≥ c

y ≥ 0.

Strong duality allows to give a simple test for optimality.

Theorem 4.5 (Complementary Slackness) If x is feasible in (P ) and y is feasible in

(D) then x is optimal in (P ) and y is optimal in (D) iff yT (b−Ax) = 0 and xT (AT y− c).

The latter statement can also be written as

either yi = 0 or (Ax)i = bi (or both) and

either xj = 0 or (AT y)j = cj (or both).
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Proof:

By strong duality we know that x is optimal in (P ) and y is optimal in (D) iff cT x = bT y.

Moreover, (cfr. Theorem 4.2) we always have that:

cT x ≤ yT Ax ≤ yT b = bT y.

Therefore, cT x = bT y is equivalent to cT x = yT Ax and yT Ax = yT b. Rearranging these

expressions, we obtain xT (AT y − c) = 0 and yT (b−Ax) = 0. QED.

Corollary 4.6 Let x be feasible in (P ). Then x is optimal iff there exists y such that

AT y

{

≥

=
cj if

{

xj = 0

xj > 0

yi

{

≥

=
0 if

{

(Ax)i = bi

(Ax)i < bi.

As a result, the optimality of a given primal feasible solution can be tested by checking

the feasibility of a system of linear inequalities and equalities.

As should be by now familiar, we can write similar conditions for linear programs in

other forms. For example,

Theorem 4.7 Let x be feasible in

Max z = cT x

subject to:

(P ) Ax = b

x ≥ 0

and y feasible in

Min w = bT y

subject to:

(D) AT y ≥ c.

Then x is optimal in (P ) and y is optimal in (D) iff xT (AT y − c) = 0.

4.4 The separating hyperplane theorem

In this section, we use duality to obtain a necessary and sufficient condition for feasibility

of a system of linear inequalities and equalities.
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Theorem 4.8 (The Separating Hyperplane Theorem) Ax = b, x ≥ 0 has no solu-

tion iff ∃y ∈ R
m : AT y ≥ 0 and bT y < 0.

The geometric interpretation behind the separating hyperplane theorem is as follows: Let

a1, . . . , an ∈ R
m be the columns of A. Then b does not belong to the cone K = {

∑n
i=1

aixi :

xi ≥ 0 for i = 1, . . . , n} generated by the ai’s iff there exists an hyperplane {x : xT y = 0}

(defined by its normal y) such that K is entirely on one side of the hyperplane (i.e. aT
i y ≥ 0

for i = 1, . . . , n) while b is on the other side (bT y < 0).

Proof:

Consider the pair of dual linear programs

Max z = 0T x

subject to:

(P ) Ax = b

x ≥ 0

and

Min w = bT y

subject to:

(D) AT y ≥ 0.

Notice that (D) is certainly feasible since y = 0 is a feasible solution. As a result, duality

implies that (P ) is infeasible iff (D) is unbounded. However, since λy is dual feasible for

any λ ≥ 0 and any dual feasible solution y, the unboundedness of (D) is equivalent to the

existence of y such that AT y ≥ 0, y ≥ 0 and bT y < 0. QED.

Other forms of the separating hyperplane theorem include:

Theorem 4.9 Ax ≤ b has no solution iff ∃y ≥ 0 : AT y = 0 and bT y < 0.

Problems

Problem 4.1. Write the dual to:

Min z = 8x1 + 2x2 + 4x3 − 4x4

subject to:

x1 + x2 + x3 + x4 = 10

x1 − x2 + 3x4 ≥ 7
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−2x1 + 3x2 + 4x3 ≥ 13

x1 ≥ 0, x2 ≥ 0, x3 ≷ 0, x4 ≷ 0

Problem 4.2. Is x1 = 4, x2 = 5 and x3 = 6 an optimal solution to:

Min z = 14x1 + 10x2 + cx3

subject to:

x1 + x2 + x3 ≥ 10

x1 − x2 + +x3 ≥ 4

3x1 + 2x2 + x3 ≥ 28

−x1 − x2 + 4x3 ≥ 15

2x1 + x2 ≥ 10

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

1. if c=5?

2. if c=8?

Justify.

Problem 4.3. Consider the linear program

Max z = 4x1 + 5x2 + 2x3

subject to:

2x1 − x2 + 2x3 ≤ 9

(P ) 3x1 + 5x2 + 4x3 ≤ 8

x1 + x2 + 2x3 ≤ 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

1. Find an optimal solution to (P ) using the simplex method.

2. Write the dual linear program. From 1, infer an optimal dual solution. Check your

answer using complementary slackness.

Problem 4.4. Prove or give a counterexample to the following statement: If the optimum

solution to the primal is unique, then the optimum solution to the dual is nondegenerate.

Problem 4.5. Construct a pair of dual linear programs such that both the primal and

the dual are infeasible.
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Problem 4.6. Consider the one constraint LP:

Max z =
n
∑

j=1

cjxj

subject to:
n
∑

j=1

ajxj = b

xj ≥ 0 for all j,

where b > 0.

1. Write its dual.

2. Develop a simple test for checking the feasibility of this problem.

3. Develop a simple test for checking unboundedness.

4. Develop a simple method for obtaining a primal optimum solution and a dual

optimum solution directly.

5. In terms of the optimum dual solution, how much does the optimum value of the

primal (or the dual) change when b is replaced by b + ǫ?

Problem 4.7. Suppose that you are given a “black box” procedure that, when given a

system of linear inequalities, either produces a feasible solution or declares that there

is no feasible solution. Show how a single call to this black box can be used to obtain

an optimal solution to the linear program

Min cT x

subject to:

Ax = b

x ≥ 0.

Hint: Also obtain an optimal solution to the dual linear program.

Problem 4.8. Consider the linear program

Max z = cT x

subject to:

Ax = b

x ≥ 0,

where A is m × n. Assume that this linear program is unbounded. Prove that, if we

replace b by b′ for any vector b′, the resulting linear program is either infeasible or

unbounded.
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Problem 4.9. Prove Theorem 4.9.

Problem 4.10. (Difficult) Prove that exactly one of the following holds:

1. There exists x ≥ 0 : A1x < b1 and A2x ≤ b2

2. There exists (y1, y2) ≥ 0 : AT
1 y1 + AT

2 y2 ≥ 0 and, either bT
1 y1 + bT

2 y2 < 0 or

(bT
1 y1 + bT

2 y2 = 0 and y1 6= 0).

Hint: give a system of linear inequalities (≤) which has a solution iff the system A1x <

b1, A2x ≤ b2 and x ≥ 0 has a solution.

Problem 4.11. Given a pair of feasible dual linear programs min{cT x : Ax ≥ b, x ≥ 0}

and max{bT y : AT y ≤ c, y ≥ 0}, prove that there exists an optimal solution x to the

primal and an optimal solution y to the dual such that xj > 0 whenever (AT y)j = cj and

yi > 0 whenever (Ax)i = bi. (This is sometimes referred to as strong complementary

slackness or Tucker’s complementary slackness.)

Hint: use Problem 4.4.10.
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Zero-Sum Matrix Games

In a matrix game, there are two players, say player I and player II. Player I has m different

pure strategies to choose from while player II has n different pure strategies. If player I

selects strategy i and player II selects strategy j then this results in player I gaining aij

units and player II losing aij units. So, if aij is positive, player II pays aij units to player

I while if aij is negative then player I pays −aij units to player II. Since the amounts

gained by one player equal the amounts paid by the other, this game is called a zero-sum

game. The matrix A = [aij ] is known to both players and is called the payoff matrix. In

a sequence of games, player I (resp. player II) may decide to randomize his choice of pure

strategies by selecting strategy i (resp. j) with some probability yi (resp. xj). The vector

y (resp. x) satisfies

m
∑

i=1

yi = 1 (resp.

n
∑

j=1

xj = 1),

yi ≥ 0 (resp. xj ≥ 0) and defines a mixed strategy.

If player I adopts the mixed strategy y then his expected gain gj if player II selects

strategy j is given by:

gj =
∑

i

aijyi = (yT A)j = yT Aej .

By using y, player I assures himself a guaranteed gain of

g = min
j

gj = min
j

(yT A)j .

Similarly, if player II adopts the mixed strategy x then his expected loss li if player I

selects strategy i is given by:

li =
∑

j

aijxj = (Ax)i = eT
i Ax

58
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and his guaranteed loss1 is

l = max
i

li = max
i

(Ax)i.

If player I uses the mixed strategy y and player II uses the mixed strategy x then the

expected gain of player I is h =
∑

i,j yiaijxj = yT Ax.

Theorem 7.1 If y and x are mixed strategies respectively for players I and II then g ≤ l.

Proof:

We have that

h = yT Ax =
∑

i

yi(Ax)i ≤ l
∑

i

yi = l

and

h = yT Ax =
∑

j

(yT A)jxj ≥ g
∑

j

xj = g

proving the result. QED.

Player I will try to select y so as to maximize his guaranteed gain g while player II will

select x so as to minimize l. From the above result, we know that the optimal guaranteed

gain g∗ of player I is at most the optimal guaranteed loss l∗ of player II.

The main result in zero-sum matrix games is the following result obtained by Von

Neumann and called the minimax theorem.

Theorem 7.2 (The Minimax Theorem) There exist mixed strategies x∗ and y∗ such

that g∗ = l∗.

Proof:

In order to prove this result, we formulate the objectives of both players as linear programs.

Player II’s objective is to minimize l. This can be expressed by:

Min l

subject to:

(P ) Ax ≤ le

eT x = 1

x ≥ 0, l ≷ 0

1Here guaranteed means that he’ll loose at most l.

Lecture notes Michel X. Goemans



7. Zero-Sum Matrix Games 60

where e is a vector of all 1’s. Indeed, for any optimal solution x∗, l∗ to (P ), we know that

l∗ = maxi(Ax∗)i since otherwise l∗ could be decreased without violating feasibility.

Similarly, player I’s objective can be expressed by:

Max g

subject to:

(D) AT y ≥ ge

eT y = 1

y ≥ 0, g ≷ 0

Again, any optimal solution to the above program will satisfy g∗ = minj(A
T y∗)j .

The result follows by noticing that (P ) and (D) constitute a pair of dual linear pro-

grams (verify it!) and, therefore, by strong duality we know that g∗ = l∗. QED.

The above Theorem can be rewritten as follows (This explains why it is called the

minimax theorem):

Corollary 7.3 max
eT y=1,y≥0

min
eT x=1,x≥0

yT Ax = min
eT x=1,x≥0

max
eT y=1,y≥0

yT Ax.

Indeed

min
eT x=1,x≥0

yT Ax = min
j

(yT A)j = g

and

max
eT y=1,y≥0

yT Ax = max
i

(Ax)i = l.

Example

Consider the game with payoff matrix

A =

(

1 −3

−2 4

)

.

Solving the linear program (P ), we obtain the following optimal mixed strategies for both

players (do it by yourself!):

x∗ =

(

7/10

3/10

)

and y∗ =

(

6/10

4/10

)

,

for which g∗ = l∗ = −2/10.

A matrix game is said to be symmetric if A = −AT . Any symmetric game is fair, i.e.

g∗ = l∗ = 0.
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Problems

Problem 7.1. Consider the matrix game based on the following payoff matrix:

A =







0 −2 1

2 0 3

−1 −3 0






.

Notice that A is antisymmetric, i.e. A = −AT .

1. Write the linear programs associated with both players. Show that these linear

programs are equivalent in the sense that if (x, l) is feasible for player II’s linear

program then (y, g) = (x,−l) is feasible for player I’s linear program and vice

versa. Prove that g∗ = l∗ = 0.

2. Using part 1 and using complementary slackness, find the optimal strategies for

both players.
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