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In the last lecture, we showed that the encoding polynomial p(x) for a single error
correcting code can be any primitive polynomial, say of degree r. A primitive
polynomial is a prime (non-factorable) polynomial such that every polynomial of
degree at most r − 1 is the remainder of some monomial, xj, upon dividing by
p(x). With such a code and encoded words of length 2r − 1, all code words have no
remainder when divided by p(k), so that the remainder of a code word altered by
one error, is the remainder of the error alone. The monomial corresponding to that
error can be found from a table of the remainders of monomials (mod p(x)).

Multiple error correcting polynomial codes were invented by mathematicians Bose,
Ray-Chaudhuri, and Hocquenghem in the 1950’s. These codes are called BCH codes
in their honor. Although BCH codes can be defined over any field, we will again,
for simplicity, restrict to the binary field and study binary BCH codes.

1 The BCH Code

Denote messages, generators (encoding polynomials), codewords, and received mes-
sages by m(x), p(x), c(x), respectively. These are represented as sequences corre-
sponding to the coefficients of a polynomial, where we take the convention of writing
the coefficients from lowest to highest degree.

Recall from the last section that polynomial codes are obtained by multiplying
message polynomials by encoding polynomials. Thus,

c(x) = m(x)p(x) =

n∑

i=1

cix
i (1)

which is also respresented by c = (c1, c2, . . . , cn) for ci ∈ GF (2).

A binary BCH code is defined as follows. Let p(x) be a primitive polynomial of
degree r with coefficients in the binary field. If c(x) is a non-zero polynomial such
that c(x) = c(x3) = c(x5) = · · · = c(x2t−1) = 0 (mod p(x)) for all t such that
1 ≤ (2t − 1) ≤ 2r − 1, then c(x) is a t-error correcting code of length n = 2r − 1.
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A received sequence can have at most t errors to guarantee correct decoding. Let
ei, 1 ≤ ei ≤ n and 1 ≤ i ≤ t, represent the location of the i-th bit in error. Then
the error monomials are xei and the error polynomial e(x) =

∑k
i=1 xei is their sum.

The received polynomial is then

r(x) = c(x) + e(x) (2)

Suppose we have a t-error correcting BCH code. Then the remainder of the received
ploynomial r(x) (mod p(x)) is equal to the sum of the remainders of the error
monomials. Furthermore, if we evaluate the received polynomial at a higher power
of x and then divide by p(x), then this is equal to the error polynomial evaluated
at the higher power and taking its remainder. That is, Rem[r(xj)]=Rem[e(xj)] for
1 ≤ j ≤ 2t − 1. Recall that if p(x) is primitive, there is a bijective map from
xei → Rem[xei ], for all ei, 1 ≤ ei ≤ n. Thus, if the error monomial or the remainder
value after dividing the error monomial xei by p(x) is known, then the position of
the error is known. For multiple errors, we only have the remainder of the sums of
error monomials. To determine each bit position in error, we need to extract each
monomial from this information.

In the following section, we show (i) how to find the encoding polynomial and (ii)
how to determine the bit positions in error from the remainders of the received
polynomial evaluated at higher powers.

2 The Generator Polynomial

For a t-error correcting code, the generator polynomial Q(x) of standard BCH codes
has the form

Q(x) = p(x)p3(x)p5(x) · · · p2t−1(x) (3)

where p(x) is a primitve polynomial and all the polynomials p3(x
3), p5(x

5), · · · ,
p2t−1(x

(2t−1)) must be divisible by p(x), i.e.,

p3(x
3) = p5(x

5) · · · p2t−1(x
2t−1) = 0 (mod p(x)) (4)

We have shown that this form is sufficient and demonstrated how to find it in the
previous lecture notes on polynomial codes. We show it here again with an example.
For primitive p(x) = 1 + x + x4, to find p3(x), note that (x6 + x9 + x12) = 1 + x3

(mod p(x)). Then, (1 + x3 + x6 + x9 + x12) = 0 (mod p(x)). Let y = x3 and let
p3(y) = 1 + y + y2 + y3 + y4. It follows that p3(x

3) = 0 (mod p(x)).

Thus, Q(x) = p(x)p3(x) = (1+x+x4)(1+x+x2+x3+x4) is a generator polynomial
for a 2-error correcting code. Using a similar procedure, we find p5(x) = 1+x+x2.
Therefore, Q(x) = p(x)p3(x)p5(x) = (1 + x + x4)(1 + x + x2 + x3 + x4)(1 + x + x2)
is the generator polynomial for a 3-error correcting BCH code.
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3 The Error Locator Polynomial and the Elementary

Symmetric Functions

Define ti =
∑t

j=1 xiej to be the i-th power sums of the error monomials. Since

t2 = t21 in the binary field, the even ti provide no new information. The ti’s are
called the power sum symmetric functions, and we will use these to find the bit
error locations.

Define the error locator polynomial E(y) of degree t such that it is equal to zero
when evaluated at the error monomials and nonzero otherwise.

E(y) = (y − xe1) (y − xe2) · · · (y − xek)

= yk + s1y
k−1 + s2y

k−2 + · · · sk−1y + sk

= 0 (5)

Then, from the fundamental theorem of algebra, for a t-error correcting code, all
the roots of the error locator polynomial are the error monomials, xej , 1 ≤ ei ≤ n

and 1 ≤ i ≤ t. We need to find a relationship between the coefficients, sj’s of the
error locator polynomial and the odd power sum symmetric functions, tj’s.

The k-th elementary symmetric function of d elements is defined as the sum of the
products of k different elements from among the d elements, combined in all possible
ways. For example, the 2nd elementary function of a, b, c, d is ab+ac+ad+bc+bd+cd.

There is a linear relationship between the elementary symmetric functions and the
odd power sums, ti, of the error monomials. The coefficients, sj, 1 ≤ j ≤ k of
the error locator polynomial are related to the ti’s in the following for k odd and
s0 = t0 = 1,

k∑

i=1

sitk−1 = sk + sk−1t1 + · · · + s1tk−1 + tk = 0 (6)

To see this for a k-error correcting code, note that the error locator polynomial in
equation 5 evaluated at each error monomial y = xei must be satisfied. That is, for
each j, 1 ≤ j ≤ t

xtej + s1e
(t−1)ej + · · · + st−1x

ej + st = 0 (7)

Sum equation 5 over all the error monomials. Then, t is the coefficient of st and tt−j

is the coefficient of sj, except that the coefficient of st is t. For any t′ > t, multiply
equation 6 by yt′−t, and follow the same proof – evaluate at each error monomial
and sum. The relationship between si and ti in equation 6 follows.

For the case of a two error correcting code over a binary field, the standard encoding
polynomial is Q(x) = p(x)p3(x). The error locator polynomial will have degree 2,
and its coefficients determined from equation 6 are given by s1 = t1 and s2 = t21+ t3

t1
.
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4 Example: 3 Error Correcting BCH Code

The encoding polynomial is of the form Q(x) = p(x)p3(x)p5(x). Suppose we use
p(x) = 1 + x + x4, then Q(x) = (1 + x + x4)(1 + x + x2 + x3 + x4)(1 + x + x2).
Suppose the received sequence is 101000110110010, then

r(x) = 1 + x2 + x6 + x7 + x9 + x10 + x13 (8)

r(x3) = 1 + x6 + x18 + x21 + x27 + x30 + x39

= 1 + x6 + x3 + x6 + x12 + x0 + x9

= x13

r(x5) = 1 + x2 + x6 + x7 + x9 + x10 + x13

= 1 + x10 + x30 + x35 + x45 + x50 + x65

= 0

We divide by p(x) = 1+x+x4 for all 3 received sequences above. Note that r(x5) = 0
means there are only 2 errors in our received sequence. Since r(x3) = x13, it is
already a monomial. We only need to add the remainders of the monomials of r(x).
1000+0010+0011+1101+0101+1110+1011 = 0100 means r(x) = x (mod p(x)).

Rem[r(x)] = t1 = x (9)

Rem[r(x3)] = t3 = x13 (10)

Rem[r(x5)] = t5 = 0

From the s − t relations in equation 6, we have

s1 + t1 = 0 (11)

s3 + s2t1 + s1t2 + t3 = 0 (12)

s3t2 + s2t3 + s1t4 + t5 = 0 (13)

Substituting equations 9 into equations 11 and solving, we get we get s1 = x,
s2 = x7, and s3 = 0.

From the elementary symmetric functions,

s1 = xe1 + xe2 + xe3 = x (14)

s2 = xe1xe2 + xe2xe3 + xe3xe1 = xe1+e2 + xe2+e3 + xe3+e1 = x7 (15)

s3 = xe1xe2xe3 = xe1+e2+e3 = 0 (16)

the error locator polynomial becomes
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E(y) = (y − xe1)(y − xe2)(y − xe3) (17)

= y3 + s1y
2 + s2y + s3 (18)

= y3 + xy2 + x7y = y2 + xy + x7 = 0

We now substitute in all the monomials y = xj, 0 ≤ j ≤ 2r to see which monomials
are solutions to the error locator polynomial. We find that x2 and x5 are roots.
The correct sequence is 100001110110010 and the message is 11010.
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